
VRML 98

Introduction to VRML 97

Lecturer

David R. Nadeau
nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau
San Diego Supercomputer Center

Tutorial notes sections

Abstract
Preface
Lecturer biography
Using the VRML examples
Using the JavaScript examples
Using the Java examples
Tutorial slides

Introduction to VRML 97

Abstract

VRML (the Virtual Reality Modeling Language) has emerged as the de facto standard for describing
3-D shapes and scenery on the World Wide Web. VRML’s technology has very broad applicability,
including web-based entertainment, distributed visualization, 3-D user interfaces to remote web
resources, 3-D collaborative environments, interactive simulations for education, virtual museums,
virtual retail spaces, and more. VRML is a key technology shaping the future of the web.

Participants in this tutorial will learn how to use VRML 97 (a.k.a. ISO VRML, VRML 2.0, and Moving
Worlds) to author their own 3-D virtual worlds on the World Wide Web. Participants will learn VRML
concepts and terminology, and be introduced to VRML’s text format syntax. Participants also will learn
tips and techniques for increasing performance and realism. The tutorial includes numerous VRML
examples and information on where to find out more about VRML features and use.

Introduction to VRML 97

Preface

Welcome to the Introduction to VRML 97 tutorial notes! These tutorial notes have been written to
give you a quick, practical, example-driven overview of VRML 97, the Web’s Virtual Reality
Modeling Language. To do this, I’ve included over 500 pages of tutorial material with nearly 200
images and over 100 VRML examples.

To use these tutorial notes you will need an HTML Web browser with support for viewing VRML
worlds. An up to date list of available VRML browsing and authoring software is available at:

The VRML Repository
(http://vrml.sdsc.edu)

What’s included in these notes

These tutorial notes primarily contain two types of information:

1. General information, such as this preface
2. Tutorial slides and examples

The tutorial slides are arranged as a sequence of 500+ hyper-linked pages containing VRML
syntax notes, VRML usage comments, or images of sample VRML worlds. Clicking on a sample
world’s image, or the file name underneath it, loads the VRML world into your browser for you to
examine yourself.

You can view the text for any of the VRML worlds using a text editor and see how I created a
particular effect. In most cases, the VRML files contain extensive comments providing
information about the techniques the file illustrates.

The tutorial notes provide a necessarily terse overview of VRML. I recommend that you invest in
one of the VRML books on the market to get thorough coverage of the language. I am a co-author
of one such VRML book, The VRML 2.0 Sourcebook. Several other good VRML books are on the
market as well.

A word about VRML versions

VRML has evolved through several versions of the language, starting way back in late 1994.
These tutorial notes cover VRML 97, the latest version of the language. To provide context, the
following table provides a quick overview of these VRML versions and the names they have
become known by.

Version Released Comments

VRML
1.0

May 1995 Begun in late 1994, the first version of VRML was largely based upon
the Open Inventor file format developed by Silicon Graphics Inc. The
VRML 1.0 specification was completed in May 1995 and included
support for shape building, lighting, and texturing.

VRML 1.0 browser plug-ins became widely available by late 1995,
though few ever supported the full range of features defined by the
VRML 1.0 specification.

VRML
1.0c

January
1996

As vendors began producing VRML 1.0 browsers, a number of
ambiguities in the VRML 1.0 specification surfaced. These problems
were corrected in a new VRML 1.0c (clarified) specification released in
January 1996. No new features were added to the language in VRML
1.0c.

VRML
1.1

canceled In late 1995, discussion began on extensions to the VRML 1.0
specification. These extensions were intended to address language
features that made browser implementation difficult or inefficient. The
extended language was tentatively dubbed VRML 1.1. These
enhancements were later dropped in favor of forging ahead on VRML
2.0 instead.

No VRML 1.1 browsers exist.

Moving
Worlds

January
1996

VRML 1.0 included features for building static, unchanging worlds
suitable for architectural walk-throughs and some scientific
visualization applications. To extend the language to support animation
and interaction, the VRML architecture group made a call for proposals
for a language redesign. Silicon Graphics, Netscape, and others worked
together to create the Moving Worlds proposal, submitted in January
1996. That proposal was later accepted and became the starting point for
developing VRML 2.0. The final VRML 2.0 language specification is
still sometimes referred to as the Moving Worlds specification, though it
differs significantly from the original Moving Worlds proposal.

VRML
2.0

August
1996

After seven months of intense effort by the VRML community, the
Moving Worlds proposal evolved to become the final VRML 2.0
specification, released in August 1996. The new specification
redesigned the VRML syntax and added an extensive set of new
features for shape building, animation, interaction, sound, fog,
backgrounds, and language extensions.

While multiple VRML 2.0 browsers exist today, as of this writing, none
are complete. All of the browsers are missing a few features.

Fortunately, most of the missing features are obscure aspects of VRML.

VRML
97

September
1997

In early 1997, efforts got under way to present the VRML 2.0
specification to the International Standards Organization (ISO) which
oversees most of the major language specifications in use in the
computing community. The ISO version of VRML 2.0 was reviewed
and the specification significantly rewritten to clarify issues. A few
minor changes to the language were also made. The final ISO VRML
was dubbed VRML 97. The VRML 97 specification features finalized in
March 1997, while the specification’s text finalized in September 1997.

Most major VRML 2.0 browsers are now VRML 97 browsers.

VRML 1.0 and VRML 2.0 differ radically in syntax and features. A VRML 1.0 browser cannot
display VRML 2.0 worlds. Most VRML 2.0 browsers, however, can display VRML 1.0 worlds.

VRML 97 differs in a few minor ways from VRML 2.0. In most cases, a VRML 2.0 browser will
be able to correctly display VRML 97 files. However, for 100% accuracy, you should have a
VRML 97 compliant browser for viewing the VRML files contained within these tutorial notes.

How I created these tutorial notes

These tutorial notes were developed primarily on Silicon Graphics High Impact UNIX
workstations. HTML and VRML text was hand-authored using a text editor. A Perl program script
was used to process raw tutorial notes text to produce the 500+ individual HTML files, one per
tutorial slide.

HTML text was displayed using Netscape Navigator 3.01 on Silicon Graphics and PC systems.
Colors were checked for viewability in 24-bit, 16-bit, and 8-bit display modes on a PC. Text sizes
were chosen for viewability at a normal 12 point font on-screen, and at an 18 point font for
presentation during the tutorial. The large text, white-on-black colors, and terse language are used
to insure that slides are readable when displayed for the tutorial audience at the conference.

VRML worlds were displayed on Silicon Graphics systems using the Silicon Graphics Cosmo
Player 1.02 VRML 97 compliant browser for Netscape Navigator. The same worlds were
displayed on PC systems using three different VRML 2.0 compliant browsers for Netscape
Navigator: Silicon Graphics Cosmo Player 2.0 beta 1, Intervista WorldView 2.0, and Newfire
Torch beta.

Texture images were created using Adobe PhotoShop 4.0 on a PC with help from KAI’s
PowerTools 3.0 from MetaTools. Image processing was also performed using the Image Tools
suite of applications for UNIX workstations from the San Diego Supercomputer Center.

PDF tutorial notes for printing were created by dumping individual tutorial slides to PostScript on
a Silicon Graphics workstation. The PostScript was transferred to a PC where it was converted to
PDF and assembled into a single PDF file using Adobe’s Distiller and Exchange.

Use of these tutorial notes

I am often asked if there are any restrictions on use of these tutorial notes. The answer is:

These tutorial notes are copyright (c) 1997 by David R. Nadeau. Users and possessors of
these tutorial notes are hereby granted a nonexclusive, royalty-free copyright and design
patent license to use this material in individual applications. License is not granted for
commercial resale, in whole or in part, without prior written permission from the authors.
This material is provided "AS IS" without express or implied warranty of any kind.

You are free to use these tutorial notes in whole or in part to help you teach your own VRML
tutorial. You may translate these notes into other languages and you may post copies of these notes
on your own Web site, as long as the above copyright notice is included as well. You may not,
however, sell these tutorial notes for profit or include them on a CD-ROM or other media product
without written permission.

If you use these tutorial notes, I ask that you:

1. Give me credit for the original material
2. Tell me since I like hearing about the use of my material!

If you find bugs in the notes, please tell me. I have worked hard to try and make the notes
bug-free, but if something slipped by, I’d like to fix it before others are confused by my mistake.

Contact

David R. Nadeau
San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92186-9784

UPS, Fed Ex: 10100 Hopkins Dr.
La Jolla, CA 92093-0505

(619) 534-5062
FAX: (619) 534-5152

nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau

Introduction to VRML 97

Lecturer biography

David R. Nadeau
Mr. Nadeau is a principal scientist at the San Diego Supercomputer Center (SDSC), specializing in
scientific visualization and virtual reality. He is an author of technical papers on graphics and
VRML and a co-author of two books on VRML (The VRML Sourcebook, and The VRML 2.0
Sourcebook). He has taught VRML courses at conferences including SIGGRAPH 96-97, WebNet
96-97, VRML 97, Eurographics 97, and Visualization 97, and is the creator of The VRML
Repository, a principal Web site for information on VRML software and documentation. Mr.
Nadeau co-chaired VRML 95, the first conference on VRML, and the VRML Behavior Workshop,
the first workshop on behavior support for VRML. He is SDSC’s representative in the VRML
Consortium.

Introduction to VRML 97

Using the VRML examples

These tutorial notes include over a hundred VRML files. Almost all of the provided worlds are
linked to from the tutorial slides pages.

VRML support

As noted in the preface to these tutorial notes, this tutorial covers VRML 97, the ISO standard
version of VRML 2.0. There are only minor differences between VRML 97 and VRML 2.0, so
any VRML 97 or VRML 2.0 browser should be able to view any of the VRML worlds contained
within these tutorial notes.

The VRML 97 (and VRML 2.0) language specifications are complex and filled with powerful
features for VRML content authors. Unfortunately, the richness of the language makes
development of a robust VRML browser difficult. As of this writing, there are nearly a dozen
VRML browsers on the market, but none support all features in VRML 97 (despite press releases
to the contrary).

I am reasonably confident that all VRML examples in these tutorial notes are correct, though of
course I could have missed something. Chances are that if one of the VRML examples doesn’t
look right, the problem is with your VRML browser and not with the example. It’s a good idea to
read carefully the release notes for your browser to see what features it does and does not support.
It’s also a good idea to regularly check your VRML browser vendor’s Web site for updates. The
industry is moving very fast and often produces new browser releases every month or so.

As of this writing, I have found that Silicon Graphics (SGI) Cosmo Player for PCs and SGI UNIX
workstations is the most complete and robust VRML 97 browser available. It is this browser that I
used for most of my VRML testing. On the Macintosh and non-SGI UNIX workstations, I was
unable to find a usable VRML browser with which to test the VRML tutorial examples.

What if my VRML browser doesn’t support a VRML feature?

If your VRML browser doesn’t support a particular VRML 97 feature, then those worlds that use
the feature will not load properly. Some VRML browsers display an error window when they
encounter an unsupported feature. Other browsers silently ignore features they do not support yet.

When your VRML browser encounters an unsupported feature, it may elect to reject the entire
VRML file, or it may load only those parts of the world that it understands. When only part of a
VRML file is loaded, those portions of the world that depend upon the unsupported features will
display incorrectly. Shapes may be in the wrong position, have the wrong size, be shaded
incorrectly, or have the wrong texture colors. Animations may not run, sounds may not play, and
interactions may not work correctly.

For most worlds I have captured an image of the world and placed it on the tutorial slide page to

give you an idea of what the world should look like. If your VRML browser’s display doesn’t look
like the picture, chances are the browser is missing support for one or more features used by the
world. Alternately, the browser may simply have a bug or two.

In general, VRML worlds later in the tutorial use features that are harder for vendors to implement
than those features used earlier in the tutorial. So, VRML worlds at the end of the tutorial are more
likely to fail to load properly than VRML worlds early in the tutorial.

Introduction to VRML 97

Using the JavaScript examples

These tutorial notes include several VRML worlds that use JavaScript program scripts within
Script nodes. The text for these program scripts is included directly within the Script node
within the VRML file.

JavaScript support

The VRML 97 specification does not require that a VRML browser support the use of JavaScript
to create program scripts for Script nodes. Fortunately, most VRML browsers do support
JavaScript program scripts, though you should check your VRML browser’s release notes to be
sure it is JavaScript-enabled.

Some VRML browsers, particularly those from Silicon Graphics, support a derivative of
JavaScript called VRMLscript. The language is essentially identical to JavaScript. Because of
Silicon Graphics’ strength in the VRML market, most VRML browser vendors have modified
their VRML browsers to support VRMLscript as well as JavaScript.

JavaScript and VRMLscript program scripts are included as text within the url field of a Script
node. To indicate the program script’s language, the field value starts with either "javascript:"
for JavaScript, or "vrmlscript:" for VRMLscript, like this:

Script {
 field SFFloat bounceHeight 1.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "vrmlscript:
 function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0;
 value_changed[1] = y;
 value_changed[2] = 0.0;
 }"
}

For compatibility with Silicon Graphics VRML browsers, all JavaScript program script examples
in these notes are tagged as "vrmlscript:", like the above example. If you have a VRML browser
that does not support VRMLscript, but does support JavaScript, then you can convert the examples
to JavaScript simply by changing the tag "vrmlscript:" to "javascript:" like this:

Script {
 field SFFloat bounceHeight 1.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "javascript:
 function set_fraction(frac, tm) {

 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0;
 value_changed[1] = y;
 value_changed[2] = 0.0;
 }"
}

What if my VRML browser doesn’t support JavaScript?

If your VRML browser doesn’t support JavaScript or VRMLscript, then those worlds that use
these languages will produce an error when loaded into your VRML browser. This is unfortunate
since JavaScript or VRMLscript is an essential feature that all VRML browsers should support. I
recommend that you consider getting a different VRML browser.

If you can’t get another VRML browser right now, there are only a few VRML worlds in these
tutorial notes that you will not be able to view. Those worlds are contained as examples in the
following tutorial sections:

Introducing script use
Writing program scripts with JavaScript
Creating new node types

So, if you don’t have a VRML browser with JavaScript or VRMLscript support, just skip the
above sections and everything will be fine.

Introduction to VRML 97

Using the Java examples

These tutorial notes include a few VRML worlds that use Java program scripts within Script
nodes. The text for these program scripts is included in files with .java file name extensions.
Before use, you will need to compile these Java program scripts to Java byte-code contained in
files with .class file name extensions.

Java support

The VRML 97 specification does not require that a VRML browser support the use of Java to
create program scripts for Script nodes. Fortunately, most VRML browsers do support Java
program scripts, though you should check your VRML browser’s release notes to be sure it is
Java-enabled.

In principle, all Java-enabled VRML browsers identically support the VRML Java API as
documented in the VRML 97 specification. Similarly, in principle, a compiled Java program script
using the VRML Java API can be executed on any type of computer within any brand of VRML
browser

In practice, neither of these ideal cases occurs. The Java language is supported somewhat
differently on different platforms, particularly as the community transitions from Java 1.0 to Java
1.1 and beyond. Additionally, the VRML Java API is implemented somewhat differently by
different VRML browsers, making it difficult to insure that a compiled Java class file will work
for all VRML browsers available now and in the future.

Because of Java incompatibilities observed with current VRML browsers, I have elected to not
include compiled Java class files in these tutorial notes. Instead, I include the uncompiled Java
program scripts. Before use, you will need to compile the Java program scripts yourself on your
platform with your VRML browser and your version of the Java language and support tools.

Compiling Java

To compile the Java examples, you will need:

The VRML Java API class files for your VRML browser
A Java compiler

All VRML browsers that support Java program scripts supply their own set of VRML Java API
class files. Typically these are automatically installed when you install your VRML browser.

There are multiple Java compilers available for most platforms. Sun Microsystems provides the
Java Development Kit (JDK) for free from its Web site at http://www.javasoft.com. The JDK
includes the javac compiler and instructions on how to use it. Multiple commercial Java
development environments are available from Microsoft, Silicon Graphics, Symantec, and others.

An up to date list of available Java products is available at Gamelan’s Web site at
http://www.gamelan.com.

Once you have the VRML Java API class files and a Java compiler, you will need to compile the
supplied Java files. Unfortunately, I can’t give you explicit directions on how to do this. Each
platform and Java compiler is different. You’ll have to consult your software’s manuals.

Once compiles, place the .class files in the slides folder along with the other tutorial slides.
Now, when you click on a VRML world using a Java program script, the class files will be
automatically loaded and the example will run.

What if my VRML browser doesn’t support Java ?

If your VRML browser doesn’t support Java, then those worlds that use Java will produce an error
when loaded into your VRML browser. This is unfortunate since Java is an essential feature that
all VRML browsers should support. I recommend that you consider getting a different VRML
browser.

What if I don’t compile the Java program scripts?

If you have a VRML browser that doesn’t support Java, or if if you don’t compile the Java
program scripts, those worlds that use Java will produce an error when loaded into your VRML
browser. Fortunately, I have kept Java use to a minimum. In fact, Java program scripts are only
used in the Writing program scripts with Java section of the tutorial slides. So, if you don’t
compile the Java program scripts, then just skip the VRML examples in that section and
everything will be fine.

Introduction to VRML 97

Table of contents

Morning

Part 1 - Shapes, geometry, and appearance

Welcome!

Introducing VRML

Building a VRML world

Building primitive shapes

Transforming shapes

Controlling appearance with materials

Grouping nodes

Naming nodes

Summary examples

Part 2 - Animation, sensors, and geometry

Introducing animation

Animating transforms

Sensing viewer actions

Building shapes out of points, lines, and faces

Building elevation grids

Building extruded shapes

Controlling color on coordinate-based geometry

Controlling shading on coordinate-based geometry

Summary examples

Afternoon

Part 3 - Textures, lights, and environment

Mapping textures

Controlling how textures are mapped

Lighting your world

Adding backgrounds

Adding fog

Adding sound

Controlling the viewpoint

Controlling navigation

Sensing the viewer

Summary examples

Part 4 - Scripts and prototypes

Controlling detail

Introducing script use

Writing program scripts with JavaScript

Writing program scripts with Java

Creating new node types

Providing information about your world

Summary examples

Miscellaneous extensions

Conclusion

1
Welcome!

Introduction to VRML 97

Schedule for the day

Tutorial scope

2

Welcome!

Introduction to VRML 97

Welcome to the tutorial!

Dave Nadeau
San Diego Supercomputer Center

nadeau@sdsc.edu

3

Welcome!

Schedule for the day

Part 1 Shapes, geometry, appearance
Break

Part 2 Animation, sensors, geometry
Lunch

Part 3 Textures, lights, environment
Break

Part 4 Scripts, prototypes

4

Welcome!

Tutorial scope

This tutorial covers VRML 97
The ISO standard revision of VRML 2.0

You will learn:
VRML file structure
Concepts and terminology
Most shape building syntax
Most sensor and animation syntax
Most program scripting syntax
Where to find out more

5
Introducing VRML

What is VRML?

What do I need to use VRML?

Examples

How can VRML be used on a Web page?

What do I need to develop in VRML?

Should I use a text editor?

Should I use a world builder?

Should I use a 3D modeler and format translator?

Should I use a shape generator?

How do I get VRML software?

6

Introducing VRML

What is VRML?

VRML is:
A simple text language for describing 3-D
shapes and interactive environments

VRML text files use a .wrl extension

7

Introducing VRML

What do I need to use VRML?

You can view VRML files using a VRML
browser:

A VRML helper-application
A VRML plug-in to an HTML browser

You can view VRML files from your local
hard disk, or from the Internet

8

Introducing VRML

Examples

[temple.wrl] [cutplane.wrl]

[spiral.wrl] [floater.wrl]

9

Introducing VRML

How can VRML be used on a Web page?

Fill Web page [boxes.wrl]
Embed into Web page [boxes1.htm]
Fill Web page frame [boxes2.htm]
Embed into Web page frame [boxes3.htm]
Embed multiple times [boxes4.htm]

10

Introducing VRML

What do I need to develop in VRML?

You can construct VRML files using:
A text editor
A world builder application
A 3D modeler and format translator
A shape generator (like a Perl script)

11

Introducing VRML

Should I use a text editor?

Pros:
No new software to buy
Access to all VRML features
Detailed control of world efficiency

Cons:
Hard to author complex 3D shapes
Requires knowledge of VRML syntax

12

Introducing VRML

Should I use a world builder?

Pros:
Easy 3-D drawing and animating user
interface
Little need to learn VRML syntax

Cons:
May not support all VRML features
May not produce most efficient VRML

13

Introducing VRML

Should I use a 3D modeler and format translator?

Pros:
Very powerful drawing and animating
features
Can make photo-realistic images too

Cons:
May not support all VRML features
May not produce most efficient VRML
Not designed for VRML
Often a one-way path from 3D modeler
into VRML
Easy to make shapes that are too complex

14

Introducing VRML

Should I use a shape generator?

Pros:
Easy way to generate complex shapes

Fractal mountains, logos, etc.
Generate VRML from CGI Perl scripts
Common to extend science applications to
generate VRML

Cons:
Only suitable for narrow set of shapes
Best used with other software

15

Introducing VRML

How do I get VRML software?

The VRML Repository at:

http://vrml.sdsc.edu

maintains uptodate information and links for:
Browser software
World builder software
File translators
Image editors
Java authoring tools
Texture libraries

Sound libraries
Object libraries
Specifications
Tutorials
Books
and more...

16

17
Building a VRML world

VRML file structure

A sample VRML file

Understanding the header

Understanding UTF8

Using comments

Using nodes

Using node type names

Using fields and values

Using field names

Using fields and values

Summary

18

Building a VRML world

VRML file structure

VRML files contain:
The file header
Comments - notes to yourself
Nodes - nuggets of scene information
Fields - node attributes you can change
Values - attribute values
more. . .

19

Building a VRML world

A sample VRML file

#VRML V2.0 utf8
A Cylinder
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 height 2.0
 radius 1.5
 }
}

20

Building a VRML world

Understanding the header

#VRML V2.0 utf8

#VRML: File contains VRML text
V2.0 : Text conforms to version 2.0 syntax
utf8 : Text uses UTF8 character set

21

Building a VRML world

Understanding UTF8

utf8 is an international character set standard

utf8 stands for:
UCS (Universal Character Set)
Transformation Format, 8-bit

Encodes 24,000+ characters for many
languages

ASCII is a subset

22

Building a VRML world

Using comments

A Cylinder

Comments start with a number-sign (#) and
extend to the end of the line

23

Building a VRML world

Using nodes

Cylinder {
}

Nodes describe shapes, lights, sounds, etc.

Every node has:
A node type (Shape, Cylinder, etc.)
A pair of curly-braces
Zero or more fields inside the curly-braces

24

Building a VRML world

Using node type names

Node type names are case sensitive
Each word starts with an upper-case
character
The rest of the word is lower-case

Some examples:
Appearance
Cylinder
Material
Shape

ElevationGrid
FontStyle
ImageTexture
IndexedFaceSet

25

Building a VRML world

Using fields and values

Cylinder {
 height 2.0
 radius 1.5
}

Fields describe node attributes

Every field has:
A field name (height, radius, etc.)
A data type (float, integer, etc.)
A default value

26

Building a VRML world

Using field names

Field names are case sensitive
The first word starts with a lower-case
character
Each additional word starts with an
upper-case character
The rest of the word is lower-case

Some examples:
appearance
height
material
radius

coordIndex
diffuseColor
fontStyle
textureTransform

27

Building a VRML world

Using fields and values

Different node types have different fields

Fields are optional
A default value is used if a field is not given

Fields can be listed in any order
The order doesn’t affect the node

28

Building a VRML world

Summary

The file header gives the version and encoding

Nodes describe scene content

Fields and values specify node attributes

Everything is case sensitive

29
Building primitive shapes

Motivation

Example

Syntax: Shape

Specifying appearance

Specifying geometry

Syntax: Box

Syntax: Cone

Syntax: Cylinder

Syntax: Sphere

Syntax: Text

Syntax: FontStyle

Syntax: FontStyle

Syntax: FontStyle

Syntax: FontStyle

A sample primitive shape

A sample primitive shape

Building multiple shapes

A sample file with multiple shapes

A sample file with multiple shapes

Summary

30

Building primitive shapes

Motivation

Shapes are the building blocks of a VRML
world

Primitive Shapes are standard building blocks:
Box
Cone
Cylinder
Sphere
Text

31

Building primitive shapes

Example

[prim.wrl]

32

Building primitive shapes

Syntax: Shape

A Shape node builds a shape
appearance - color and texture
geometry - form, or structure

Shape {
 appearance . . .
 geometry . . .
}

33

Building primitive shapes

Specifying appearance

Shape appearance is described by appearance
nodes

For now, we’ll use nodes to create a shaded
white appearance:

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry . . .
}

34

Building primitive shapes

Specifying geometry

Shape geometry is built with geometry nodes:

Box { . . . }
Cone { . . . }
Cylinder { . . . }
Sphere { . . . }
Text { . . . }

Geometry node fields control dimensions
Dimensions usually in meters, but can be
anything

35

Building primitive shapes

Syntax: Box

A Box geometry node builds a box
size - width, height, depth

[box.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Box {
 size 2.0 2.0 2.0
 }
}

36

Building primitive shapes

Syntax: Cone

A Cone geometry node builds an upright cone
height and bottomRadius - cylinder size
bottom and side - parts on or off

[cone.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cone {
 height 2.0
 bottomRadius 1.0
 bottom TRUE
 side TRUE
 }
}

37

Building primitive shapes

Syntax: Cylinder

A Cylinder geometry node builds an upright
cylinder

height and radius - cylinder size
bottom, top, and side - parts on or off

[cyl.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 height 2.0
 radius 1.0
 bottom TRUE
 top TRUE
 side TRUE
 }
}

38

Building primitive shapes

Syntax: Sphere

A Sphere geometry node builds a sphere
radius - sphere radius

[sphere.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Sphere {
 radius 1.0
 }
}

39

Building primitive shapes

Syntax: Text

A Text geometry node builds text
string - text to build
fontStyle - font control

[text.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string ["Text",
 "Shape"]
 fontStyle FontStyle {
 style "BOLD"
 }
 }
}

40

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
family - SERIF, SANS, or TYPEWRITER
style - BOLD, ITALIC, BOLDITALIC, or PLAIN

[textfont.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string . . .
 fontStyle FontStyle {
 family "SERIF"
 style "BOLD"
 }
 }
}

41

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
size - character height
spacing - row/column spacing

[textsize.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string . . .
 fontStyle FontStyle {
 size 1.0
 spacing 1.0
 }
 }
}

42

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
justify - FIRST, BEGIN, MIDDLE, or END

[textjust.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string . . .
 fontStyle FontStyle {
 justify "BEGIN"
 }
 }
}

43

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
horizontal - horizontal or vertical
leftToRight and topToBottom - direction

[textvert.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string . . .
 fontStyle FontStyle {
 horizontal FALSE
 leftToRight TRUE
 topToBottom TRUE
 }
 }
}

44

Building primitive shapes

A sample primitive shape

#VRML V2.0 utf8
A cylinder
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 height 2.0
 radius 1.5
 }
}

45

Building primitive shapes

A sample primitive shape

[cylinder.wrl]

46

Building primitive shapes

Building multiple shapes

Shapes are built centered in the world

A VRML file can contain multiple shapes

Shapes overlap when built at the same
location

47

Building primitive shapes

A sample file with multiple shapes

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Box {
 size 1.0 1.0 1.0
 }
}
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Sphere {
 radius 0.7
 }
}
. . .

48

Building primitive shapes

A sample file with multiple shapes

[space.wrl]

49

Building primitive shapes

Summary

Shapes are built using a Shape node

Shape geometry is built using geometry nodes,
such as Box, Cone, Cylinder, Sphere, and Text

Text fonts are controlled using a FontStyle
node

50

51
Transforming shapes

Motivation

Example

Using coordinate systems

Visualizing a coordinate system

Transforming a coordinate system

Syntax: Transform

Including children

Translating

Translating

Rotating

Specifying rotation axes

Rotating

Using the Right-Hand Rule

Using the Right-Hand Rule

Scaling

Scaling

Scaling, rotating, and translating

Scaling, rotating, and translating

A sample transform group

A sample transform group

52

Transforming shapes

Motivation

By default, all shapes are built at the center of
the world

A transform enables you to
Position shapes
Rotate shapes
Scale shapes

53

Transforming shapes

Example

[towers.wrl]

54

Transforming shapes

Using coordinate systems

A VRML file builds components for a world

A file’s world components are built in the
file’s world coordinate system

By default, all shapes are built at the origin of
the world coordinate system

55

Transforming shapes

Visualizing a coordinate system

a. XYZ axes and a simple shape b. XYZ axes and a complex
shape

56

Transforming shapes

Transforming a coordinate system

A transform creates a coordinate system that
is

Positioned
Rotated
Scaled

relative to a parent coordinate system

Shapes built in the new coordinate system are
positioned, rotated, and scaled along with it

57

Transforming shapes

Syntax: Transform

The Transform group node creates a group
with its own coordinate system

translation - position
rotation - orientation
scale - size
children - shapes to build

Transform {
 translation . . .
 rotation . . .
 scale . . .
 children [. . .]
}

58

Transforming shapes

Including children

The children field includes a list of one or
more nodes

Transform {
 . . .
 children [
 Shape { . . . }
 Shape { . . . }
 Transform { . . . }
 . . .
]
}

59

Transforming shapes

Translating

Translation positions a coordinate system in
X, Y, and Z

Transform {
 # X Y Z
 translation 2.0 0.0 0.0
 children [. . .]
}

60

Transforming shapes

Translating

a. World coordinate system b. New coordinate system,
translated 2.0 units in X

c. Shape built in new coordinate system

61

Transforming shapes

Rotating

Rotation orients a coordinate system about a
rotation axis by a rotation angle

Angles are measured in radians
radians = degrees / 180.0 * 3.1415927

Transform {
 # X Y Z Angle
 rotation 0.0 0.0 1.0 0.52
 children [. . .]
}

62

Transforming shapes

Specifying rotation axes

A rotation axis defines a pole to rotate around
Like the Earth’s North-South pole

Typical rotations are about the X, Y, or Z
axes:

Rotate about Axis

X-Axis 1.0 0.0 0.0

Y-Axis 0.0 1.0 0.0

Z-Axis 0.0 0.0 1.0

63

Transforming shapes

Rotating

a. World coordinate system b. New coordinate system,
rotated 30.0 degrees around Z

c. Shape built in new coordinate system

64

Transforming shapes

Using the Right-Hand Rule

Positive rotations are counter-clockwise

To help remember positive and negative
rotation directions:

Open your hand
Stick out your thumb
Aim your thumb in an axis positive
direction
Curl your fingers around the axis

The curl direction is a positive rotation

65

Transforming shapes

Using the Right-Hand Rule

a. X-axis rotation b. Y-axis rotation

c. Z-axis rotation

66

Transforming shapes

Scaling

Scale grows or shrinks a coordinate system by
a scaling factor in X, Y, and Z

Transform {
 # X Y Z
 scale 0.5 0.5 0.5
 children [. . .]
}

67

Transforming shapes

Scaling

a. World coordinate system b. New coordinate system,
scaled by half

c. Shape built in new coordinate system

68

Transforming shapes

Scaling, rotating, and translating

Scale, Rotate, and Translate a coordinate
system, one after the other

Transform {
 translation 2.0 0.0 0.0
 rotation 0.0 0.0 1.0 0.52
 scale 0.5 0.5 0.5
 children [. . .]
}

Read operations bottom-up:
The children are scaled, rotated, then
translated
Order is fixed, independent of field order

69

Transforming shapes

Scaling, rotating, and translating

a. World coordinate system b. New coordinate system,
scaled by half,

rotated 30.0 degrees around Z,
and translated 2.0 units in X

70

Transforming shapes

A sample transform group

Transform {
 translation -2.0 3.0 0.0
 children [
 Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 radius 0.3
 height 6.0
 top FALSE
 }
 }
]
}
. . .

71

Transforming shapes

A sample transform group

[arch.wrl] [arches.wrl]

72

Transforming shapes

Summary

All shapes are built in a coordinate system

The Transform node creates a new coordinate
system relative to its parent

Transform node fields do
translation
rotation
scale

73
Controlling appearance with materials

Motivation

Example

Syntax: Shape

Syntax: Appearance

Syntax: Material

Specifying colors

Syntax: Material

Experimenting with shiny materials

Example

A sample world using appearance

A sample world using appearance

Summary

74

Controlling appearance with materials

Motivation

The primitive shapes have a default emissive
(glowing) white appearance

You can control a shape’s
Shading color
Glow color
Transparency
Shininess
Ambient intensity

75

Controlling appearance with materials

Example

[colors.wrl]

76

Controlling appearance with materials

Syntax: Shape

Recall that Shape nodes describe:
appearance - color and texture
geometry - form, or structure

Shape {
 appearance . . .
 geometry . . .
}

77

Controlling appearance with materials

Syntax: Appearance

An Appearance node describes overall shape
appearance

material properties - color, transparency,
etc.

Shape {
 appearance Appearance {
 material . . .
 }
 geometry . . .
}

78

Controlling appearance with materials

Syntax: Material

A Material node controls shape material
attributes

diffuseColor - main shading color
emissiveColor - glowing color
transparency - opaque or not

Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 emissiveColor 0.0 0.0 0.0
 transparency 0.0
 }
 }
 geometry . . .
}

79

Controlling appearance with materials

Specifying colors

Colors specify:
A mixture of red, green, and blue light
Values between 0.0 (none) and 1.0 (lots)

Color Red Green Blue Result

White 1.0 1.0 1.0 (white)

Red 1.0 0.0 0.0 (red)

Yellow 1.0 1.0 0.0 (yellow)

Cyan 0.0 1.0 1.0 (cyan)

Brown 0.5 0.2 0.0 (brown)

80

Controlling appearance with materials

Syntax: Material

A Material node also controls shape shininess
specularColor - highlight color
shininess - highlight size
ambientIntensity - ambient lighting effects

Shape {
 appearance Appearance {
 material Material {
 specularColor 0.71 0.70 0.56
 shininess 0.16
 ambientIntensity 0.4
 }
 }
 geometry . . .
}

81

Controlling appearance with materials

Experimenting with shiny materials

Description ambient
Intensity

diffuse
Color

specular
Color shininess

Aluminum 0.30 0.30 0.30 0.50 0.70 0.70 0.80 0.10
Copper 0.26 0.30 0.11 0.00 0.75 0.33 0.00 0.08
Gold 0.40 0.22 0.15 0.00 0.71 0.70 0.56 0.16
Metalic Purple 0.17 0.10 0.03 0.22 0.64 0.00 0.98 0.20
Metalic Red 0.15 0.27 0.00 0.00 0.61 0.13 0.18 0.20
Plastic Blue 0.10 0.20 0.20 0.71 0.83 0.83 0.83 0.12

82

Controlling appearance with materials

Example

[shiny.wrl]

83

Controlling appearance with materials

A sample world using appearance

Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.2 0.2 0.2
 emissiveColor 0.0 0.0 0.8
 transparency 0.25
 }
 }
 geometry Box {
 size 2.0 4.0 0.3
 }
}
. . .

84

Controlling appearance with materials

A sample world using appearance

[slabs.wrl]

85

Controlling appearance with materials

Summary

The Appearance node controls overall shape
appearance

The Material node controls overall material
properties including:

Shading color
Glow color
Transparency
Shininess
Ambient intensity

86

87
Grouping nodes

Motivation

Syntax: Group

Syntax: Switch

Syntax: Transform

Syntax: Billboard

Billboard rotation axes

Billboard rotation axes

A sample billboard group

A sample billboard group

Syntax: Anchor

A Sample Anchor

Syntax: Inline

A sample inlined file

A sample inlined file

Summary

Summary

88

Grouping nodes

Motivation

You can group shapes to compose complex
shapes
VRML has several grouping nodes, including:

Group { . . . }
Switch { . . . }
Transform { . . . }
Billboard { . . . }
Anchor { . . . }
Inline { . . . }

89

Grouping nodes

Syntax: Group

The Group node creates a basic group
Every child node in the group is displayed

Group {
 children [. . .]
}

90

Grouping nodes

Syntax: Switch

The Switch group node creates a switched
group

Only one child node in the group is
displayed
You select which child

Children implicitly numbered from 0
A -1 selects no children

Switch {
 whichChoice 0
 choice [. . .]
}

91

Grouping nodes

Syntax: Transform

The Transform group node creates a group
with its own coordinate system

Every child node in the group is displayed

Transform {
 translation 0.0 0.0 0.0
 rotation 0.0 1.0 0.0 0.0
 scale 1.0 1.0 1.0
 children [. . .]
}

92

Grouping nodes

Syntax: Billboard

The Billboard group node creates a group
with a special coordinate system

Every child node in the group is displayed
Coordinate system is turned to face viewer

Billboard {
 axisOfRotation 0.0 1.0 0.0
 children [. . .]
}

93

Grouping nodes

Billboard rotation axes

A rotation axis defines a pole to rotate round
Similar to a Transform node’s rotation field,
but no angle (auto computed)

a. Viewer moves to the right b. Billboard automatically
rotates to face viewer

94

Grouping nodes

Billboard rotation axes

A standard rotation axis limits rotation to
spin about that axis

A zero rotation axis enables rotation around
any axis

Rotate about Axis

X-Axis 1.0 0.0 0.0

Y-Axis 0.0 1.0 0.0

Z-Axis 0.0 0.0 1.0

Any Axis 0.0 0.0 0.0

95

Grouping nodes

A sample billboard group

Billboard {
 # Y-axis
 axisOfRotation 0.0 1.0 0.0
 children [
 Shape { . . . }
 Shape { . . . }
 Shape { . . . }
 . . .
]
}

96

Grouping nodes

A sample billboard group

[Y axis: robobill.wrl,

Any axis: robobil2.wrl]

97

Grouping nodes

Syntax: Anchor

An Anchor node creates a group that acts as a
clickable anchor

Every child node in the group is displayed
Clicking any child follows a URL
A description names the anchor

Anchor {
 url "stairwy.wrl"
 description "Twisty Stairs"
 children [. . .]
}

98

Grouping nodes

A Sample Anchor

[anchor.wrl]
a. Click on door to go

to...

[stairwy.wrl]
b. ...the stairway world

99

Grouping nodes

Syntax: Inline

An Inline node creates a special group from
another VRML file’s contents

Children read from file selected by a URL
Every child node in group is displayed

Inline {
 url "table.wrl"
}

100

Grouping nodes

A sample inlined file

Inline { url "table.wrl" }
. . .
Transform {
 translation -0.95 0.0 0.0
 rotation 0.0 1.0 0.0 3.14
 children [
 Inline { url "chair.wrl" }
]
}

101

Grouping nodes

A sample inlined file

[table.wrl, chair.wrl, dinette.wrl]

102

Grouping nodes

Summary

The Group node creates a basic group

The Switch node creates a group with 1 choice
used

The Transform node creates a group with a
new coordinate system

103

Grouping nodes

Summary

The Billboard node creates a group with a
coordinate system that rotates to face the
viewer

The Anchor node creates a clickable group
Clicking any child in the group loads a
URL

The Inline node creates a special group
loaded from another VRML file

104

105
Naming nodes

Motivation

Syntax: DEF

Using DEF

Syntax: USE

Using USE

Using named nodes

A sample use of node names

A sample use of node names

Summary

106

Naming nodes

Motivation

If several shapes have the same geometry or
appearance, you must use multiple duplicate
nodes, one for each use

Instead, define a name for the first occurrence
of a node

Later, use that name to share the same node
in a new context

107

Naming nodes

Syntax: DEF

The DEF syntax gives a name to a node

Shape {
 appearance Appearance {
 material DEF RedColor Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry . . .
}

108

Naming nodes

Using DEF

DEF must be in upper-case

You can name any node

Names can be most any sequence of letters
and numbers

Names must be unique within a file

109

Naming nodes

Syntax: USE

The USE syntax uses a previously named node

Shape {
 appearance Appearance {
 material USE RedColor
 }
 geometry . . .
}

110

Naming nodes

Using USE

USE must be in upper-case

A re-use of a named node is called an instance

A named node can have any number of
instances

Each instance shares the same node
description
You can only instance names defined in the
same file

111

Naming nodes

Using named nodes

Naming and using nodes:
Saves typing
Reduces file size
Enables rapid changes to shapes with the
same attributes
Speeds browser processing

Names are also necessary for animation...

112

Naming nodes

A sample use of node names

Inline { url "table.wrl" }
Transform {
 translation 0.95 0.0 0.0
 children DEF Chair Inline { url "chair.wrl" }
}
Transform {
 translation -0.95 0.0 0.0
 rotation 0.0 1.0 0.0 3.14
 children USE Chair
}
Transform {
 translation 0.0 0.0 0.95
 rotation 0.0 1.0 0.0 -1.57
 children USE Chair
}
Transform {
 translation 0.0 0.0 -0.95
 rotation 0.0 1.0 0.0 1.57
 children USE Chair
}

113

Naming nodes

A sample use of node names

[dinette.wrl]

114

Naming nodes

Summary

DEF names a node

USE uses a named node

115
Summary examples

A fairy-tale castle

A bar plot

A simple spaceship

A juggling hand

116

Summary examples

A fairy-tale castle

Cylinder nodes build the towers
Cone nodes build the roofs and tower bottoms

[castle.wrl]

117

Summary examples

A bar plot

Box nodes create the bars
Text nodes provide bar labels
Billboard nodes keep the labels facing the
viewer

[barplot.wrl]

118

Summary examples

A simple spaceship

Sphere nodes make up all parts of the ship
Transform nodes scale the spheres into ship
parts

[space2.wrl]

119

Summary examples

A juggling hand

Cylinder and Sphere nodes build fingers and
joints
Transform nodes articulate the hand

[hand.wrl]

120

121
Introducing animation

Motivation

Building animation circuits

Examples

Routing events

Using node inputs and outputs

Sample inputs

Sample outputs

Syntax: ROUTE

Event data types

Event data types

Event data types

Following naming conventions

A sample animation

A sample animation

Using multiple routes

Summary

122

Introducing animation

Motivation

Nodes like Billboard and Anchor have built-in
behavior

You can create your own behaviors to make
shapes move, rotate, scale, blink, and more

We need a means to trigger, time, and
respond to a sequence of events in order to
provide better user/world interactions

123

Introducing animation

Building animation circuits

Almost every node can be a component in an
animation circuit

Nodes act like virtual electronic parts
Nodes can send and receive events
Wired routes connect nodes together

An event is a message sent between nodes
A data value (such as a translation)
A time stamp (when did the event get sent)

124

Introducing animation

Examples

To spin a shape:
Connect a node that sends rotation events to
a Transform node’s rotation field

To blink a shape:
Connect a node that sends color events to a
Material node’s diffuseColor field

125

Introducing animation

Routing events

To set up an animation circuit, you need three
things:

1. A node which sends events
The node must be named with DEF

2. A node which receives events
The node must be named with DEF

3. A route connecting them

126

Introducing animation

Using node inputs and outputs

Every node has fields, inputs, and outputs:
field: A stored value
eventIn: An input
eventOut: An output

An exposedField is a short-hand for a field,
eventIn, and eventOut

127

Introducing animation

Sample inputs

A Transform node has these eventIns:
set_translation
set_rotation
set_scale

A Material node has these eventIns:
set_diffuseColor
set_emissiveColor
set_transparency

128

Introducing animation

Sample outputs

An OrientationInterpolator node has this
eventOut:

value_changed to send rotation values

A PositionInterpolator node has this
eventOut:

value_changed to send position (translation)
values

A TimeSensor node has this eventOut:
time to send time values

129

Introducing animation

Syntax: ROUTE

A ROUTE statement connects two nodes
together using

The sender’s node name and eventOut
name
The receiver’s node name and eventIn
name

ROUTE MySender.rotation_changed
 TO MyReceiver.set_rotation

ROUTE and TO must be in upper-case

130

Introducing animation

Event data types

Sender and receiver event data types must
match!

Data types have names with a standard
format, such as:

SFString, SFRotation, or MFColor

Character Values

1 S: Single value
M: Multiple values

2 Always an F
remainder Name of data type, such as String,

Rotation, or Color

131

Introducing animation

Event data types

Data type Meaning

SFBool Boolean, true or false value
SFColor, MFColor RGB color value
SFFloat, MFFloat Floating point value
SFImage Image value
SFInt32, MFInt32 Integer value
SFNode, MFNode Node value

132

Introducing animation

Event data types

Data type Meaning

SFRotation, MFRotation Rotation value
SFString, MFString Text string value
SFTime Time value
SFVec2f, MFVec2f XY floating point value
SFVec3f, MFVec3f XYZ floating point value

133

Introducing animation

Following naming conventions

Most nodes have exposedFields

If the exposed field name is xxx, then:
set_xxx is an eventIn to set the field
xxx_changed is an eventOut that sends when
the field changes
The set_ and _changed sufixes are optional
but recommended for clarity

The Transform node has:
rotation field
set_rotation eventIn
rotation_changed eventOut

134

Introducing animation

A sample animation

DEF Touch TouchSensor { }

DEF Timer1 TimeSensor { . . . }

DEF Rot1 OrientationInterpolator { . . . }

DEF Frame1 Transform {
 children [
 Shape { . . . }
]
}

ROUTE Touch.touchTime TO Timer1.set_startTime
ROUTE Timer1.fraction_changed TO Rot1.set_fraction
ROUTE Rot1.value_changed TO Frame1.set_rotation

135

Introducing animation

A sample animation

[colors.wrl]

136

Introducing animation

Using multiple routes

You can have fan-out
Multiple routes out of the same sender

You can have fan-in
Multiple routes into the same receiver

137

Introducing animation

Summary

Connect senders to receivers using routes

eventIns are inputs, and eventOuts are outputs

A route names the sender.eventOut, and the
receiver.eventIn

Data types must match

You can have multiple routes into or out of a
node

138

139
Animating transforms

Motivation

Example

Controlling time

Using absolute time

Using fractional time

Syntax: TimeSensor

Using timers

Using timers

Using timers

Using timer outputs

A sample time sensor

A sample time sensor

Converting time to position

Interpolating positions

Syntax: PositionInterpolator

Using position interpolator inputs and outputs

A sample using position interpolators

A sample using position interpolators

Using other types of interpolators

Syntax: OrientationInterpolator

Syntax: PositionInterpolator

Syntax: ColorInterpolator

Syntax: ScalarInterpolator

A sample using other interpolators

Summary

Summary

Summary

140

Animating transforms

Motivation

An animation changes something over time:
position - a car driving
orientation - an airplane banking
color - seasons changing

Animation requires control over time:
When to start and stop
How fast to go

141

Animating transforms

Example

[floater.wrl]

142

Animating transforms

Controlling time

A TimeSensor node is similar to a stop watch
You control the start and stop time

The sensor generates time events while it is
running

To animate, route time events into other nodes

143

Animating transforms

Using absolute time

A TimeSensor node generates absolute and
fractional time events

Absolute time events give the wall-clock time
Absolute time is measured in seconds since
12:00am January 1, 1970!
Useful for triggering events at specific dates
and times

144

Animating transforms

Using fractional time

Fractional time events give a number from 0.0
to 1.0

When the sensor starts, it outputs a 0.0

At the end of a cycle, it outputs a 1.0

The number of seconds between 0.0 and 1.0
is controlled by the cycle interval

The sensor can loop forever, or run through
only one cycle and stop

145

Animating transforms

Syntax: TimeSensor

A TimeSensor node generates events based
upon time

startTime and stopTime - when to run
cycleInterval - how long a cycle is
loop - whether or not to repeat cycles

TimeSensor {
 cycleInterval 1.0
 loop FALSE
 startTime 0.0
 stopTime 0.0
}

146

Animating transforms

Using timers

To create a continuously running timer:
loop TRUE
stopTime <= startTime

When stop time <= start time, stop time is
ignored

147

Animating transforms

Using timers

To run until the stop time:
loop TRUE
stopTime > startTime

To run one cycle then stop:
loop FALSE
stopTime <= startTime

148

Animating transforms

Using timers

The set_startTime input event:
Sets when the timer should start

The set_stopTime input event:
Sets when the timer should stop

149

Animating transforms

Using timer outputs

The isActive output event:
Outputs TRUE at timer start
Outputs FALSE at timer stop

The time output event:
Outputs the absolute time

The fraction_changed output event:
Outputs values from 0.0 to 1.0 during a
cycle
Resets to 0.0 at the start of each cycle

150

Animating transforms

A sample time sensor

Shape {
 appearance Appearance {
 material DEF Monolith1Facade Material {
 diffuseColor 0.2 0.2 0.2
 }
 }
 geometry Box { size 2.0 4.0 0.3 }
}
DEF Monolith1Timer TimeSensor {
 cycleInterval 4.0
 loop FALSE
 startTime 0.0
 stopTime 0.1
}

ROUTE Monolith1Touch.touchTime
 TO Monolith1Timer.set_startTime
ROUTE Monolith1Timer.fraction_changed
 TO Monolith1Facade.set_transparency

151

Animating transforms

A sample time sensor

[monolith.wrl]

152

Animating transforms

Converting time to position

To animate the position of a shape you
provide:

A list of key positions for a movement path
A time at which to be at each position

An interpolator node converts an input time to
an output position

When a time is in between two key
positions, the interpolator computes an
intermediate position

153

Animating transforms

Interpolating positions

Each key position along a path has:
A key value (such as a position)
A key fractional time

Interpolation fills in values between your key
values:

Fractional Time Position

0.0 0.0 0.0 0.0
0.1 0.4 0.1 0.0
0.2 0.8 0.2 0.0
.

0.5 4.0 1.0 0.0
.

154

Animating transforms

Syntax: PositionInterpolator

A PositionInterpolator node describes a
position path

key - key fractional times
keyValue - key positions

PositionInterpolator {
 key [0.0, . . .]
 keyValue [0.0 0.0 0.0, . . .]
}

Typically route into a Transform node’s
set_translation input

155

Animating transforms

Using position interpolator inputs and outputs

The set_fraction input:
Sets the current fractional time along the
key path

The value_changed output:
Outputs the position along the path each
time the fraction is set

156

Animating transforms

A sample using position interpolators

DEF Particle1 Transform {
 children [
 Shape { . . . }
]
}
DEF Timer1 TimeSensor {
 cycleInterval 12.0
 loop TRUE
 startTime 0.0
 stopTime -1.0
}
DEF Position1 PositionInterpolator {
 key [0.0, . . .]
 keyValue [0.0 0.0 0.0, . . .]
}
ROUTE Timer1.fraction_changed TO Position1.set_fraction
ROUTE Position1.value_changed TO Particle1.set_translation

157

Animating transforms

A sample using position interpolators

[spiral.wrl]

158

Animating transforms

Using other types of interpolators

Animate position PositionInterpolator

Animate rotation OrientationInterpolator

Animate scale PositionInterpolator

Animate color ColorInterpolator

Animate transparency ScalarInterpolator

159

Animating transforms

Syntax: OrientationInterpolator

A OrientationInterpolator node describes an
orientation path

key - key fractional times
keyValue - key rotations (axis and angle)

OrientationInterpolator {
 key [0.0, . . .]
 keyValue [0.0 1.0 0.0 0.0, . . .]
}

Typically route into a Transform node’s
set_rotation input

160

Animating transforms

Syntax: PositionInterpolator

A PositionInterpolator node describes a
position or scale path

key - key fractional times
keyValue - key positions (or scales)

PositionInterpolator {
 key [0.0, . . .]
 keyValue [0.0 0.0 0.0, . . .]
}

Typically route into a Transform node’s
set_scale input

161

Animating transforms

Syntax: ColorInterpolator

ColorInterpolator node describes a color path
key - key fractional times
keyValue - key colors (red, green, blue)

ColorInterpolator {
 key [0.0, . . .]
 keyValue [1.0 1.0 0.0, . . .]
}

Typically route into a Material node’s
set_diffuseColor or set_emissiveColor inputs

162

Animating transforms

Syntax: ScalarInterpolator

ScalarInterpolator node describes a scalar
path

key - key fractional times
keyValue - key scalars (used for anything)

ScalarInterpolator {
 key [0.0, . . .]
 keyValue [4.5, . . .]
}

Often route into a Material node’s
set_transparency input

163

Animating transforms

A sample using other interpolators

[squisher.wrl]

164

Animating transforms

Summary

The TimeSensor node’s fields control
Timer start and stop times
The cycle interval
Whether the timer loops or not

The sensor outputs
true/false on isActive at start and stop
absolute time on time while running
fractional time on fraction_changed while
running

165

Animating transforms

Summary

Interpolators use key times and values and
compute intermediate values

All interpolators have:
a set_fraction input to set the fractional
time
a value_changed output to send new values

166

Animating transforms

Summary

The PositionInterpolator node converts times
to positions (or scales)

The OrientationInterpolator node converts
times to rotations

The ColorInterpolator node converts times to
colors

The ScalarInterpolator node converts times to
scalars (such as transparencies)

167
Sensing viewer actions

Motivation

Using action sensors

Sensing shapes

Syntax: TouchSensor

A sample use of a TouchSensor node

A sample use of a TouchSensor node

Syntax: SphereSensor

Syntax: CylinderSensor

Syntax: PlaneSensor

Using multiple sensors

A sample use of a multiple sensors

Summary

168

Sensing viewer actions

Motivation

You can sense when the viewer’s cursor:
Is over a shape
Has touched a shape
Is dragging atop a shape

You can trigger animations on a viewer’s
touch

You can enable the viewer to move and rotate
shapes

169

Sensing viewer actions

Using action sensors

There are four main action sensor types:
TouchSensor senses touch
SphereSensor senses drags
CylinderSensor senses drags
PlaneSensor senses drags

The Anchor node is a special-purpose action
sensor with a built-in response

170

Sensing viewer actions

Sensing shapes

All action sensors sense all shapes in the same
group

Sensors trigger when the viewer’s cursor
touches a sensed shape

171

Sensing viewer actions

Syntax: TouchSensor

A TouchSensor node senses the cursor’s touch
isOver - send true/false when cursor
over/not over
isActive - send true/false when mouse
button pressed/released
touchTime - send time when mouse button
released

Transform {
 children [
 DEF Touched TouchSensor { }
 Shape { . . . }
 . . .
]
}

172

Sensing viewer actions

A sample use of a TouchSensor node

DEF Touch TouchSensor { }

DEF Timer1 TimeSensor { . . . }

DEF Rot1 OrientationInterpolator { . . . }

DEF Frame1 Transform {
 children [
 Shape { . . . }
]
}

ROUTE Touch.touchTime TO Timer1.set_startTime
ROUTE Timer1.fraction_changed TO Rot1.set_fraction
ROUTE Rot1.value_changed TO Frame1.set_rotation

173

Sensing viewer actions

A sample use of a TouchSensor node

[colors.wrl]

174

Sensing viewer actions

Syntax: SphereSensor

A SphereSensor node senses a cursor drag and
generates rotations as if rotating a ball

isActive - sends true/false when mouse
button pressed/released
rotation_changed - sends rotation during a
drag

Transform {
 children [
 DEF Rotator SphereSensor { }
 DEF RotateMe Transform { . . . }
]
}
ROUTE Rotator.rotation_changed TO RotateMe.set_rotation

175

Sensing viewer actions

Syntax: CylinderSensor

A CylinderSensor node senses a cursor drag
and generates rotations as if rotating a
cylinder

isActive - sends true/false when mouse
button pressed/released
rotation_changed - sends rotation during a
drag

Transform {
 children [
 DEF Rotator CylinderSensor { }
 DEF RotateMe Transform { . . . }
]
}
ROUTE Rotator.rotation_changed TO RotateMe.set_rotation

176

Sensing viewer actions

Syntax: PlaneSensor

A PlaneSensor node senses a cursor drag and
generates translations as if sliding on a plane

isActive - sends true/false when mouse
button pressed/released
translation_changed - sends translations
during a drag

Transform {
 children [
 DEF Mover PlaneSensor { }
 DEF MoveMe Transform { . . . }
]
}
ROUTE Mover.translation_changed TO MoveMe.set_translation

177

Sensing viewer actions

Using multiple sensors

Multiple sensors can sense the same shape but.
. .

If sensors are in the same group:
They all respond

If sensors are at different depths in the
hierarchy:

The deepest sensor responds
The other sensors do not respond

178

Sensing viewer actions

A sample use of a multiple sensors

[lamp.wrl]

179

Sensing viewer actions

Summary

Action sensors sense when the viewer’s
cursor:

is over a shape
has touched a shape
is dragging atop a shape

Sensors convert viewer actions into events to
Start and stop animations
Orient shapes
Position shapes

180

181
Building shapes out of points, lines, and faces

Motivation

Example

Building shapes using coordinates

Syntax: Coordinate

Using geometry coordinates

Syntax: PointSet

A sample PointSet node shape

Syntax: IndexedLineSet

Using line set coordinate indexes

Using line set coordinate index lists

A sample IndexedLineSet node shape

Syntax: IndexedFaceSet

Using face set coordinate index lists

Using face set coordinate index lists

A sample IndexedFaceSet node shape

Syntax: IndexedFaceSet

Using shape control

Syntax: CoordinateInterpolator

Interpolating coordinate lists

A sample use of a CoordinateInterpolator node

Summary

Summary

Summary

182

Building shapes out of points, lines, and faces

Motivation

Complex shapes are hard to build with
primitive shapes

Terrain
Animals
Plants
Machinery

Instead, build shapes out of atomic
components:

Points, lines, and faces

183

Building shapes out of points, lines, and faces

Example

[isosurf.wrl]

184

Building shapes out of points, lines, and faces

Building shapes using coordinates

Shape building is like a 3-D connect-the-dots
game:

Place dots at 3-D locations
Connect-the-dots to form shapes

A coordinate specifies a 3-D dot location
Measured relative to a coordinate system
origin

A geometry node specifies how to connect the
dots

185

Building shapes out of points, lines, and faces

Syntax: Coordinate

A Coordinate node contains a list of
coordinates for use in building a shape

Coordinate {
 point [
X Y Z
 2.0 1.0 3.0,
 4.0 2.5 5.3,
 . . .
]
}

186

Building shapes out of points, lines, and faces

Using geometry coordinates

Build coordinate-based shapes using geometry
nodes:

PointSet
IndexedLineSet
IndexedFaceSet

For all three nodes, use a Coordinate node as
the value of the coord field

187

Building shapes out of points, lines, and faces

Syntax: PointSet

A PointSet geometry node creates geometry
out of points

One point (a dot) is placed at each
coordinate

Shape {
 appearance Appearance { . . . }
 geometry PointSet {
 coord Coordinate {
 point [. . .]
 }
 }
}

188

Building shapes out of points, lines, and faces

A sample PointSet node shape

[ptplot.wrl]

189

Building shapes out of points, lines, and faces

Syntax: IndexedLineSet

An IndexedLineSet geometry node creates
geometry out of lines

A straight line is drawn between pairs of
selected coordinates

Shape {
 appearance Appearance { . . . }
 geometry IndexedLineSet {
 coord Coordinate {
 point [. . .]
 }
 coordIndex [. . .]
 }
}

190

Building shapes out of points, lines, and faces

Using line set coordinate indexes

Each coordinate in a Coordinate node is
implicitly numbered

Index 0 is the first coordinate
Index 1 is the second coordinate, etc.

To build a line shape
Make a list of coordinates, using their
indexes

List coordinate indexes in the coordIndex
field of the IndexedLineSet node

191

Building shapes out of points, lines, and faces

Using line set coordinate index lists

A line is drawn between pairs of coordinate
indexes

-1 marks a break in the line

A line is not automatically drawn from the
last index back to the first

coordIndex [1, 0, 3, 8, -1, 5, 9, 0]
1, 0, 3, 8, Draw line from 1 to 0 to

3 to 8
-1, End line, start next
5, 9, 0 Draw line from 5 to 9 to

0

192

Building shapes out of points, lines, and faces

A sample IndexedLineSet node shape

[lnplot.wrl]

193

Building shapes out of points, lines, and faces

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates
geometry out of faces

A flat face (polygon) is drawn using an
outline specified by coordinate indexes

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate {
 point [. . .]
 }
 coordIndex [. . .]
 }
}

194

Building shapes out of points, lines, and faces

Using face set coordinate index lists

To build a face shape
Make a list of coordinates, using their
indexes

List coordinate indexes in the coordIndex
field of the IndexedFaceSet node

195

Building shapes out of points, lines, and faces

Using face set coordinate index lists

A triangle is drawn connecting sequences of
coordinate indexes

-1 marks a break in the sequence

Each face is automatically closed,
connecting the last index back to the first

coordIndex [1, 0, 3, 8, -1, 5, 9, 0]
1, 0, 3, 8 Draw face from 1 to 0 to

3 to 8 to 1
-1, End face, start next
5, 9, 0 Draw face from 5 to 9 to

0 to 5

196

Building shapes out of points, lines, and faces

A sample IndexedFaceSet node shape

[lightng.wrl]

197

Building shapes out of points, lines, and faces

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates
geometry out of faces

solid - shape is solid
ccw - faces are counter-clockwise
convex - faces are convex

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 solid TRUE
 ccw TRUE
 convex TRUE
 }
}

198

Building shapes out of points, lines, and faces

Using shape control

A solid shape is one where the insides are
never seen

If never seen, don’t attempt to draw them
When solid TRUE, the back sides (inside) of
faces are not drawn

The front of a face has coordinates in
counter-clockwise order

When ccw FALSE, the other side is the front

Faces are assumed to be convex
When convex FALSE, concave faces are
automatically broken into multiple convex
faces

199

Building shapes out of points, lines, and faces

Syntax: CoordinateInterpolator

A CoordinateInterpolator node describes a
coordinate path

keys - key fractions
values - key coordinate lists (X,Y,Z lists)

CoordinateInterpolator {
 key [0.0, . . .]
 keyValue [0.0 1.0 0.0, . . .]
}

Typically route into a Coordinate node’s
set_point input

200

Building shapes out of points, lines, and faces

Interpolating coordinate lists

A CoordinateInterpolator node interpolates
lists of coordinates

Each output is a list of coordinates
If n output coordinates are needed for t
fractional times:

n × t coordinates are needed in the key
value list

201

Building shapes out of points, lines, and faces

A sample use of a CoordinateInterpolator node

[wiggle.wrl]

202

Building shapes out of points, lines, and faces

Summary

Shapes are built by connecting together
coordinates

Coordinates are listed in a Coordinate node

Coordinates are implicitly numbers starting
at 0

Coordinate index lists give the order in which
to use coordinates

203

Building shapes out of points, lines, and faces

Summary

The PointSet node draws a dot at every
coordinate

The coord field value is a Coordinate node

The IndexedLineSet node draws lines between
coordinates

The coord field value is a Coordinate node
The coordIndex field value is a list of
coordinate indexes

204

Building shapes out of points, lines, and faces

Summary

The IndexedFaceSet node draws faces outlined
by coordinates

The coord field value is a Coordinate node
The coordIndex field value is a list of
coordinate indexes

The CoordinateInterpolator node converts
times to coordinates

205
Building elevation grids

Motivation

Example

Syntax: ElevationGrid

Syntax: ElevationGrid

Syntax: ElevationGrid

A sample elevation grid

A sample elevation grid

Summary

206

Building elevation grids

Motivation

Building terrains is very common
Hills, valleys, mountains
Other tricky uses...

You can build a terrain using an
IndexedFaceSet node

You can build terrains more efficiently using
an ElevationGrid node

207

Building elevation grids

Example

[16 x 16: mount16.wrl]

[32 x 32: mount32.wrl]

[128 x 128: mount128.wrl]

208

Building elevation grids

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

xDimension and zDimension - grid size
xSpacing and zSpacing - row and column
distances

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 xDimension 3
 zDimension 2
 xSpacing 1.0
 zSpacing 1.0
 . . .
 }
}

209

Building elevation grids

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

height - elevations at grid points

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 . . .
 height [
 0.0, -0.5, 0.0,
 0.2, 4.0, 0.0
]
 }
}

210

Building elevation grids

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

solid - shape is solid
ccw - faces are counter-clockwise

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 . . .
 solid TRUE
 ccw TRUE
 }
}

211

Building elevation grids

A sample elevation grid

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 xDimension 9
 zDimension 9
 xSpacing 1.0
 zSpacing 1.0
 solid FALSE
 height [
 0.0, 0.0, 0.5, 1.0, 0.5, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 2.5, 0.5, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.5, 0.5, 3.0, 1.0, 0.5, 0.0, 1.0,
 0.0, 0.0, 0.5, 2.0, 4.5, 2.5, 1.0, 1.5, 0.5,
 1.0, 2.5, 3.0, 4.5, 5.5, 3.5, 3.0, 1.0, 0.0,
 0.5, 2.0, 2.0, 2.5, 3.5, 4.0, 2.0, 0.5, 0.0,
 0.0, 0.0, 0.5, 1.5, 1.0, 2.0, 3.0, 1.5, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.5, 0.5,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0,
]
 }
}

212

Building elevation grids

A sample elevation grid

[mount.wrl]

213

Building elevation grids

Summary

An ElevationGrid node efficiently creates a
terrain

Grid size is specified in the xDimension and
zDimension fields

Grid spacing is specified in the xSpacing and
zSpacing field

Elevations at each grid point are specified in
the height field

214

215
Building extruded shapes

Motivation

Examples

Creating extruded shapes

Extruding along a straight line

Extruding around a circle

Extruding along a helix

Syntax: Extrusion

Syntax: Extrusion

Squishing and twisting extruded shapes

Syntax: Extrusion

Sample extrusions with scale and rotation

Summary

216

Building extruded shapes

Motivation

Extruded shapes are very common
Tubes, pipes, bars, vases, donuts
Other tricky uses...

You can build extruded shapes using an
IndexedFaceSet node

You can build extruded shapes more easily
and efficiently using an Extrusion node

217

Building extruded shapes

Examples

[slide.wrl]

[donut.wrl]

218

Building extruded shapes

Creating extruded shapes

Extruded shapes are described by
A 2-D cross-section
A 3-D spine along which to sweep the
cross-section

Extruded shapes are like long bubbles created
with a bubble wand

The bubble wand’s outline is the
cross-section
The path along which you swing the wand
is the spine

219

Building extruded shapes

Extruding along a straight line

a. Square cross-section b. Straight spine

c. Resulting extrusion

220

Building extruded shapes

Extruding around a circle

a. Circular cross-section b. Circular spine

c. Resulting extrusion

221

Building extruded shapes

Extruding along a helix

a. Half-circle
cross-section b. Helical spine

c. Resulting extrusion

222

Building extruded shapes

Syntax: Extrusion

An Extrusion geometry node creates extruded
geometry

cross-section - 2-D cross-section
spine - 3-D sweep path
endCap and beginCap - cap ends

Shape {
 appearance Appearance { . . . }
 geometry Extrusion {
 crossSection [. . .]
 spine [. . .]
 endCap TRUE
 beginCap TRUE
 . . .
 }
}

223

Building extruded shapes

Syntax: Extrusion

An Extrusion geometry node creates extruded
geometry

solid - shape is solid
ccw - faces are counter-clockwise
convex - faces are convex

Shape {
 appearance Appearance { . . . }
 geometry Extrusion {
 . . .
 solid TRUE
 ccw TRUE
 convex TRUE
 }
}

224

Building extruded shapes

Squishing and twisting extruded shapes

You can scale the cross-section along the spine
Vases, musical instruments
Surfaces of revolution

You can rotate the cross-section along the
spine

Twisting ribbons

225

Building extruded shapes

Syntax: Extrusion

An Extrusion geometry node creates geometry
using

scale - cross-section scaling per spine point
orientation - cross-section rotation per
spine point

Shape {
 appearance Appearance { . . . }
 geometry Extrusion {
 . . .
 scale [. . .]
 orientation [. . .]
 }
}

226

Building extruded shapes

Sample extrusions with scale and rotation

[horn.wrl]

[bartwist.wrl]

227

Building extruded shapes

Summary

An Extrusion node efficiently creates extruded
shapes

The crossSection field specifies the
cross-section

The spine field specifies the sweep path

The scale and orientation fields specify
scaling and rotation at each spine point

228

229
Controlling color on coordinate-based geometry

Motivation

Example

Syntax: Color

Binding colors

Syntax: PointSet

A sample PointSet node shape

Syntax: IndexedLineSet

Controlling color binding for line sets

A sample IndexedLineSet node shape

Syntax: IndexedFaceSet

Controlling color binding for face sets

A sample IndexedFaceSet node shape

Syntax: ElevationGrid

Controlling color binding for elevation grids

A sample ElevationGrid node shape

Summary

230

Controlling color on coordinate-based geometry

Motivation

The Material node gives an entire shape the
same color

You can provide colors for individual parts of
a shape using a Color node

231

Controlling color on coordinate-based geometry

Example

[cmount.wrl]

232

Controlling color on coordinate-based geometry

Syntax: Color

A Color node contains a list of RGB values
(similar to a Coordinate node)

Color {
 color [1.0 0.0 0.0, . . .]
}

Used as the color field value of
IndexedFaceSet, IndexedLineSet, PointSet or
ElevationGrid nodes

233

Controlling color on coordinate-based geometry

Binding colors

Colors in the Color node override those in the
Material node

You can bind colors
To each point, line, or face
To each coordinate in a line, or face

234

Controlling color on coordinate-based geometry

Syntax: PointSet

A PointSet geometry node creates geometry
out of points

color - provides a list of colors
Always binds one color to each point, in
order

Shape {
 appearance Appearance { . . . }
 geometry PointSet {
 coord Coordinate { . . . }
 color Color { . . . }
 }
}

235

Controlling color on coordinate-based geometry

A sample PointSet node shape

[scatter.wrl]

236

Controlling color on coordinate-based geometry

Syntax: IndexedLineSet

An IndexedLineSet geometry node creates
geometry out of lines

color - list of colors
colorIndex - selects colors from list
colorPerVertex - control color binding

Shape {
 appearance Appearance { . . . }
 geometry IndexedLineSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 color Color { . . . }
 colorIndex [. . .]
 colorPerVertex TRUE
 }
}

237

Controlling color on coordinate-based geometry

Controlling color binding for line sets

The colorPerVertex field controls how color
indexes are used

FALSE: one color index to each line (ending
at -1 coordinate indexes)

TRUE: one color index to each coordinate
index of each line (including -1 coordinate
indexes)

238

Controlling color on coordinate-based geometry

A sample IndexedLineSet node shape

[burst.wrl]

239

Controlling color on coordinate-based geometry

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates
geometry out of faces

color - list of colors
colorIndex - selects colors from list
colorPerVertex - control color binding

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 color Color { . . . }
 colorIndex [. . .]
 colorPerVertex TRUE
 }
}

240

Controlling color on coordinate-based geometry

Controlling color binding for face sets

The colorPerVertex field controls how color
indexes are used (similar to line sets)

FALSE: one color index to each face (ending
at -1 coordinate indexes)

TRUE: one color index to each coordinate
index of each face (including -1 coordinate
indexes)

241

Controlling color on coordinate-based geometry

A sample IndexedFaceSet node shape

[log.wrl]

242

Controlling color on coordinate-based geometry

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

color - list of colors
colorPerVertex - control color binding
Always binds one color to each grid point
or square, in order

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 . . .
 height [. . .]
 color Color { . . . }
 colorPerVertex TRUE
 }
}

243

Controlling color on coordinate-based geometry

Controlling color binding for elevation grids

The colorPerVertex field controls how color
indexes are used (similar to line and face sets)

FALSE: one color to each grid square

TRUE: one color to each height for each grid
square

244

Controlling color on coordinate-based geometry

A sample ElevationGrid node shape

[cmount.wrl]

245

Controlling color on coordinate-based geometry

Summary

The Color node lists colors to use for parts of a
shape

Used as the value of the color field
Color indexes select colors to use
Colors override Material node

The colorPerVertex field selects color per
line/face/grid square or color per coordinate

246

247
Controlling shading on coordinate-based geometry

Motivation

Example

Controlling shading using the crease angle

Selecting crease angles

A sample using crease angles

Using normals

Syntax: Normal

Syntax: IndexedFaceSet

Controlling normal binding for face sets

Syntax: ElevationGrid

Controlling normal binding for elevation grids

Syntax: NormalInterpolator

Summary

248

Controlling shading on coordinate-based geometry

Motivation

When shaded, the faces on a shape are
obvious

To create a smooth shape you can use a large
number of small faces

Requires lots of faces, disk space, memory,
and drawing time

Instead, use smooth shading to create the
illusion of a smooth shape, but with a small
number of faces

249

Controlling shading on coordinate-based geometry

Example

[cmount.wrl]

a. No smooth shading

[cmount2.wrl]

b. With smooth shading

250

Controlling shading on coordinate-based geometry

Controlling shading using the crease angle

By default, faces are drawn with faceted
shading

You can enable smooth shading using the
creaseAngle field for

IndexedFaceSet
ElevationGrid
Extrusion

251

Controlling shading on coordinate-based geometry

Selecting crease angles

A crease angle is a threshold angle between
two faces

If face angle >= crease
angle, use facet shading

If face angle < crease
angle, use smooth shading

252

Controlling shading on coordinate-based geometry

A sample using crease angles

[hcyl1.wrl]

a. crease angle = 0
Smooth shading disabled

[hcyl2.wrl]

b. crease angle = 90 deg
Smooth shading enabled

253

Controlling shading on coordinate-based geometry

Using normals

A normal vector indicates the direction a face
is facing

If it faces a light, the face is shaded bright

By defualt, normals are automatically
generated by the VRML browser

You can specify your own normals with a
Normal node

Usually automatically generated normals
are good enough

254

Controlling shading on coordinate-based geometry

Syntax: Normal

A Normal node contains a list of normal vectors
that override use of a crease angle

Normal {
 vector [0.0 1.0 0.0, . . .]
}

Normals can be given for IndexedFaceSet and
ElevationGrid nodes

255

Controlling shading on coordinate-based geometry

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates
geometry out of faces

normal - list of normals
normalIndex - selects normals from list
normalPerVertex - control normal binding

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 normal Normal { . . . }
 normalIndex [. . .]
 normalPerVertex TRUE
 }
}

256

Controlling shading on coordinate-based geometry

Controlling normal binding for face sets

The normalPerVertex field controls how
normal indexes are used

FALSE: one normal index to each face
(ending at -1 coordinate indexes)

TRUE: one normal index to each coordinate
index of each face (including -1 coordinate
indexes)

257

Controlling shading on coordinate-based geometry

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

normal - list of normals
normalPerVertex - control normal binding
Always binds one normal to each grid point
or square, in order

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 height [. . .]
 normal Normal { . . . }
 normalPerVertex TRUE
 }
}

258

Controlling shading on coordinate-based geometry

Controlling normal binding for elevation grids

The normalPerVertex field controls how
normal indexes are used (similar to face sets)

FALSE: one normal to each grid square

TRUE: one normal to each height for each
grid square

259

Controlling shading on coordinate-based geometry

Syntax: NormalInterpolator

A NormalInterpolator node describes a normal
set

keys - key fractions
values - key normal lists (X,Y,Z lists)
Interpolates lists of normals, similar to the
CoordinateInterpolator

NormalInterpolator {
 key [0.0, . . .]
 keyValue [0.0 1.0 1.0, . . .]
}

Typically route into a Normal node’s
set_vector input

260

Controlling shading on coordinate-based geometry

Summary

The creaseAngle field controls faceted or
smooth shading

The Normal node lists normal vectors to use for
parts of a shape

Used as the value of the normal field
Normal indexes select normals to use
Normals override creaseAngle value

The normalPerVertex field selects normal per
face/grid square or normal per coordinate

The NormalInterpolator node converts times to
normals

261
Summary examples

A terrain

Particle flow

A real-time clock

A timed timer

A morphing snake

262

Summary examples

A terrain

An ElevationGrid node creates a terrain
A Color node provides terrain colors

[land.wrl]

263

Summary examples

Particle flow

Multiple Extrusion nodes trace particle paths
Multiple PositionInterpolator nodes define
particle animation paths
Multiple TimeSensor nodes clock the animation
using different starting times

[espiralm.wrl]

264

Summary examples

A real-time clock

A set of TimeSensor nodes watch the time
A set of OrientationInterpolator nodes spin
the clock hands

[stopwtch.wrl]

265

Summary examples

A timed timer

A first TimeSensor node clocks a second
TimeSensor node to create a periodic animation

[timetime.wrl]

266

Summary examples

A morphing snake

A CoordinateInterpolator node animates the
spine of an Extrusion node

[snake.wrl]

267
Mapping textures

Motivation

Example

Example Textures

Using image textures

Using pixel textures

Using movie textures

Syntax: Appearance

Syntax: ImageTexture

Syntax: PixelTexture

Syntax: MovieTexture

Using materials with textures

Colorizing textures

Using transparent textures

A sample transparent texture

A sample transparent texture

Summary

268

Mapping textures

Motivation

You can model every tiny texture detail of a
world using a vast number of colored faces

Takes a long time to write the VRML
Takes a long time to draw

Use a trick instead
Take a picture of the real thing
Paste that picture on the shape, like
sticking on a decal

This technique is called Texture Mapping

269

Mapping textures

Example

[can.wrl]

270

Mapping textures

Example Textures

271

Mapping textures

Using image textures

Image texture
Uses a single image from a file in one of
these formats:

GIF 8-bit lossless compressed images
1 transparency color
Usually a poor choice for texture mapping

JPEG 8-bit thru 24-bit lossy compressed images
No transparency support
An adequate choice for texture mapping

PNG 8-bit thru 24-bit lossless compressed images
8-bit transparency per pixel
Best choice

272

Mapping textures

Using pixel textures

Pixel texture
A single image, given in the VRML file
itself

The image is encoded using hex
Up to 10 bytes per pixel
Very inefficient
Only useful for very small textures

Stripes
Checkerboard patterns

273

Mapping textures

Using movie textures

Movie texture
A movie from an MPEG-1 file

The movie plays back on the textured
shape

Problematic in some browsers

274

Mapping textures

Syntax: Appearance

An Appearance node describes overall shape
appearance

texture - texture source

Shape {
 appearance Appearance {
 material Material { . . . }
 texture ImageTexture { . . . }
 }
 geometry . . .
}

275

Mapping textures

Syntax: ImageTexture

An ImageTexture node selects a texture image
for texture mapping

url - texture image file URL

Shape {
 appearance Appearance {
 material Material { }
 texture ImageTexture {
 url "wood.jpg"
 }
 }
 geometry . . .
}

276

Mapping textures

Syntax: PixelTexture

A PixelTexture node specifies texture image
pixels for texture mapping

image - texture image pixels
Image data - width, height, bytes/pixel,
pixel values

Shape {
 appearance Appearance {
 material Material { }
 texture PixelTexture {
 image 2 1 3
 0xFFFF00 0xFF0000
 }
 }
 geometry . . .
}

277

Mapping textures

Syntax: MovieTexture

A MovieTexture node selects a texture movie
for texture mapping

url - texture movie file URL
When to play the movie, and how quickly
(like a TimeSensor node)

Shape {
 appearance Appearance {
 material Material { }
 texture MovieTexture {
 url "movie.mpg"
 loop TRUE
 speed 1.0
 startTime 0.0
 stopTime 0.0
 }
 }
 geometry . . .
}

278

Mapping textures

Using materials with textures

Color textures override the color in a Material
node

Grayscale textures multiply with the Material
node color

Good for colorizing grayscale textures

If there is no Material node, the texture is
applied emissively

279

Mapping textures

Colorizing textures

a. Grayscale wood
texture

b. Six wood colors from
one colorized texture

280

Mapping textures

Using transparent textures

Texture images can include color and
transparency values for each pixel

Pixel transparency is also known as alpha

Pixel transparency enables you to make parts
of a shape transparent

Windows, grillwork, holes
Trees, clouds

281

Mapping textures

A sample transparent texture

a. Color portion of tree

texture

b. Transparency portion

of tree texture

282

Mapping textures

A sample transparent texture

[treewall.wrl]

283

Mapping textures

Summary

A texture is like a decal pasted to a shape

Specify the texture using an ImageTexture,
PixelTexture, or MovieTexture node in an
Appearance node

Color textures override material, grayscale
textures multiply

Textures with transparency create holes

284

285
Controlling how textures are mapped

Motivation

Working through the texturing process

Using texture coordinate system

Specifying texture coordinates

Applying texture transforms

Texturing a face

Working through the texturing process

Syntax: TextureCoordinate

Syntax: IndexedFaceSet

Syntax: ElevationGrid

Syntax: Appearance

Syntax: TextureTransform

A sample using no transform

A sample using translation

A sample using rotation

A sample using scale

A sample using texture coordinates

A sample using scale

Scaling, rotating, and translating

Scaling, rotating, and translating

A sample using scale and rotation

Summary

286

Controlling how textures are mapped

Motivation

By default, an entire texture image is mapped
once around the shape

You can also:
Extract only pieces of interest
Create repeating patterns

287

Controlling how textures are mapped

Working through the texturing process

Imagine the texture image is a big piece of
rubbery cookie dough

Select a texture image piece
Define the shape of a cookie cutter
Position and orient the cookie cutter
Stamp out a piece of texture dough

Stretch the rubbery texture cookie to fit a face

288

Controlling how textures are mapped

Using texture coordinate system

Texture images (the dough) are in a texture
coordinate system

S direction is
horizontal

T direction is vertica
(0,0) at lower-left
(1,1) at upper-right

289

Controlling how textures are mapped

Specifying texture coordinates

Texture coordinates and texture coordinate
indexes specify a texture piece shape (the
cookie cutter)

0.0 0.0,
1.0 0.0,
1.0 1.0,
0.0 1.0

290

Controlling how textures are mapped

Applying texture transforms

Texture transforms translate, rotate, and scale
the texture coordinates (placing the cookie
cutter)

291

Controlling how textures are mapped

Texturing a face

Bind the texture to a face (stretch the cookie
and stick it)

292

Controlling how textures are mapped

Working through the texturing process

Select piece with texture coordinates and
indexes

Create a cookie cutter

Transform the texture coordinates
Position and orient the cookie cutter

Bind the texture to a face
Stamp out the texture and stick it on a face

The process is very similar to creating faces!

293

Controlling how textures are mapped

Syntax: TextureCoordinate

A TextureCoordinate node contains a list of
texture coordinates

TextureCoordinate {
 point [0.2 0.2, 0.8 0.2, . . .]
}

Used as the texCoord field value of
IndexedFaceSet or ElevationGrid nodes

294

Controlling how textures are mapped

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates
geometry out of faces

texCoord and texCoordIndex - specify texture
pieces

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 texCoord TextureCoordinate { . . . }
 texCoordIndex [. . .]
 }
}

295

Controlling how textures are mapped

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

texCoord - specify texture pieces
Automatically generated texture coordinate
indexes

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 height [. . .]
 texCoord TextureCoordinate { . . . }
 }
}

296

Controlling how textures are mapped

Syntax: Appearance

An Appearance node describes overall shape
appearance

textureTransform - transform

Shape {
 appearance Appearance {
 material Material { . . . }
 texture ImageTexture { . . . }
 textureTransform TextureTransform { . . . }
 }
 geometry . . .
}

297

Controlling how textures are mapped

Syntax: TextureTransform

A TextureTransform node transforms texture
coordinates

translation - position
rotation - orientation
scale - size

Shape {
 appearance Appearance {
 material Material { . . . }
 texture ImageTexture { . . . }
 textureTransform TextureTransform {
 translation 0.0 0.0
 rotation 0.0
 scale 1.0 1.0
 }
 }
}

298

Controlling how textures are mapped

A sample using no transform

a. Texture in texture
space

b. Texture on shape

299

Controlling how textures are mapped

A sample using translation

a. Texture in texture
space

b. Translated cookie
cutter

c. Texture on shape

300

Controlling how textures are mapped

A sample using rotation

a. Texture in texture
space

b. Rotated cookie cutter

c. Texture on shape

301

Controlling how textures are mapped

A sample using scale

a. Texture in texture
space

b. Scaled cookie cutter

c. Texture on shape

302

Controlling how textures are mapped

A sample using texture coordinates

a. Texture image [cookie.wrl]
b. Texture on shapes

303

Controlling how textures are mapped

A sample using scale

a. Texture image [brickb.wrl]
b. Texture on shape

304

Controlling how textures are mapped

Scaling, rotating, and translating

Scale, Rotate, and Translate a texture cookie
cutter one after the other

Shape {
 appearance Appearance {
 material Material { . . . }
 texture ImageTexture { . . . }
 textureTransform TextureTransform {
 translation 0.0 0.0
 rotation .785
 scale 8.5 8.5
 }
 }
}

305

Controlling how textures are mapped

Scaling, rotating, and translating

Read texture transform operations top-down:
The cookie cutter is translated, rotated,
then scaled
Order is fixed, independent of field order
This is the reverse of a Transform node

This is a significant difference between VRML
2.0 and ISO VRML 97

VRML 2.0 uses scale, rotate, translate
order
ISO VRML 97 uses translate, rotate, scale
order

306

Controlling how textures are mapped

A sample using scale and rotation

a. Texture image [fence.wrl]
b. Texture on shape

307

Controlling how textures are mapped

Summary

Texture images are in a texture coordinate
system

Texture coordinates and indexes describe a
texture cookie cutter

Texture transforms translate, rotate, and
scale place the cookie cutter

Texture indexes bind the cut-out cookie
texture to a face on a shape

309
Lighting your world

Motivation

Example

Using types of lights

Using common lighting features

Using common lighting features

Syntax: PointLight

Syntax: DirectionalLight

Syntax: SpotLight

Syntax: SpotLight

Example

Summary

310

Lighting your world

Motivation

By default, you have one light in the scene,
attached to your head

For more realism, you can add multiple lights
Suns, light bulbs, candles
Flashlights, spotlights, firelight

Lights can be positioned, oriented, and
colored

Lights do not cast shadows

311

Lighting your world

Example

312

Lighting your world

Using types of lights

Theer are three types of VRML lights
Point lights - radiate in all directions from a
point

Directional lights - aim in one direction
from infinitely far away

Spot lights - aim in one direction from a
point, radiating in a cone

313

Lighting your world

Using common lighting features

All lights have several common fields:
on - turn it on or off
intensity - control brightness
ambientIntensity - control ambient effect
color - select color

314

Lighting your world

Using common lighting features

Point lights and spot lights also have:
location - position
radius - maximum lighting distance
attenuation - drop off with distance

Directional lights and spot lights also have
direction - aim direction

315

Lighting your world

Syntax: PointLight

A PointLight node illuminates radially from a
point

[pntlite.wrl]

PointLight {
 location 0.0 0.0 0.0
 intensity 1.0
 color 1.0 1.0 1.0
}

316

Lighting your world

Syntax: DirectionalLight

A DirectionalLight node illuminates in one
direction from infinitely far away

[dirlite.wrl]

DirectionalLight {
 direction 1.0 0.0 0.0
 intensity 1.0
 color 1.0 1.0 1.0
}

317

Lighting your world

Syntax: SpotLight

A SpotLight node illuminates from a point, in
one direction, within a cone

[sptlite.wrl]

SpotLight {
 location 0.0 0.0 0.0
 direction 1.0 0.0 0.0
 intensity 1.0
 color 1.0 1.0 1.0
 cutOffAngle 0.785
}

318

Lighting your world

Syntax: SpotLight

The maximum width of a spot light’s cone is
controlled by the cutOffAngle field

An inner cone region with constant brightness
is controlled by the beamWidth field

SpotLight {
 . . .
 cutOffAngle 0.785
 beamWidth 0.52
}

319

Lighting your world

Example

[temple.wrl]

320

Lighting your world

Summary

There are three types of lights: point,
directional, and spot

All lights have an on/off, intensity, ambient
effect, and color

Point and spot lights have a location, radius,
and attenuation

Directional and spot lights have a direction

321
Adding backgrounds

Motivation

Using the background components

Using the background components

Syntax: Background

Using sky angles and colors

Using ground angles and colors

A sample background

A sample background

Syntax: Background

A sample background image

A sample background

A sample background

Summary

322

Adding backgrounds

Motivation

Shapes form the foreground of your scene

You can add a background to provide context

Backgrounds describe:
Sky and ground colors
Panorama images of mountains, cities, etc

Backgrounds are faster to draw than if you
used shapes to build them

323

Adding backgrounds

Using the background components

A background creates three special shapes:
A sky sphere
A ground hemisphere inside the sky sphere
A panorama box inside the ground
hemisphere

The sky sphere and ground hemisphere are
shaded with a color gradient

The panorama box is texture mapped with six
images

324

Adding backgrounds

Using the background components

Transparent parts of the ground hemisphere
reveal the sky sphere

Transparent parts of the panorama box reveal
the ground and sky

The viewer can look up, down, and
side-to-side to see different parts of the
background

The viewer can never get closer to the
background

325

Adding backgrounds

Syntax: Background

A Background node describes background
colors

skyColor and skyAngle - sky gradation
groundColor and groundAngle - ground
gradation

Background {
 skyColor [0.1 0.1 0.0, . . .]
 skyAngle [1.309, 1.571]
 groundColor [0.0 0.2 0.7, . . .]
 groundAngle [1.309, 1.571]
}

326

Adding backgrounds

Using sky angles and colors

The first sky color is at the north pole

The remaining sky colors are at given sky
angles

The maximum angle is 180 degrees =
3.1415 radians

The last color smears on down to the south
pole

327

Adding backgrounds

Using ground angles and colors

The first ground color is at the south pole

The remaining ground colors are at given
ground angles

The maximum angle is 90 degrees = 1.5708
radians

After the last color, the rest of the hemisphere
is transparent

328

Adding backgrounds

A sample background

Background {
 skyColor [
 0.0 0.2 0.7,
 0.0 0.5 1.0,
 1.0 1.0 1.0
]
 skyAngle [1.309, 1.571]
 groundColor [
 0.1 0.10 0.0,
 0.4 0.25 0.2,
 0.6 0.60 0.6,
]
 groundAngle [1.309, 1.571]
}

329

Adding backgrounds

A sample background

[back.wrl]

330

Adding backgrounds

Syntax: Background

A Background node describes background
images

frontUrl, etc - texture image URLs for box

Background {
 . . .
 frontUrl "mountns.png"
 backUrl "mountns.png"
 leftUrl "mountns.png"
 rightUrl "mountns.png"
 topUrl "clouds.png"
 bottomUrl "ground.png"
}

331

Adding backgrounds

A sample background image

a. Color portion of
mountains texture

b. Transparency portion
of mountains texture

332

Adding backgrounds

A sample background

Background {
 skyColor [
 0.0 0.2 0.7,
 0.0 0.5 1.0,
 1.0 1.0 1.0
]
 skyAngle [1.309, 1.571]
 groundColor [
 0.1 0.10 0.0,
 0.4 0.25 0.2,
 0.6 0.60 0.6,
]
 groundAngle [1.309, 1.571]
 frontUrl "mountns.png"
 backUrl "mountns.png"
 leftUrl "mountns.png"
 rightUrl "mountns.png"
 # no top or bottom images
}

333

Adding backgrounds

A sample background

[back2.wrl]

334

Adding backgrounds

Summary

Backgrounds describe:
Ground and sky color gradients on ground
hemisphere and sky sphere

Panorama images on a panorama box

The viewer can look around, but never get
closer to the background

335
Adding fog

Motivation

Examples

Using fog visibility controls

Selecting a fog color

Syntax: Fog

Several fog samples

Summary

336

Adding fog

Motivation

Fog increases realism:
Add fog outside to create hazy worlds
Add fog inside to create dark dungeons
Use fog to set a mood

The further the viewer can see, the more you
have to model and draw

To reduce development time and drawing
time, limit the viewer’s sight by using fog

337

Adding fog

Examples

[fog2.wrl] [fog4.wrl]

338

Adding fog

Using fog visibility controls

The fog type selects linear or exponential
visibility reduction with distance

Linear is easier to control
Exponential is more realistic and "thicker"

The visibility range selects the distance where
the fog reaches maximum thickness

Fog is "clear" at the viewer, and gradually
reduces visibility

339

Adding fog

Selecting a fog color

Fog has a fog color
White is typical, but black, red, etc. also
possible

Shapes are faded to the fog color with distance

The background is unaffected
For the best effect, make the background
the fog color

340

Adding fog

Syntax: Fog

A Fog node creates colored fog
color - fog color
fogType - LINEAR or EXPONENTIAL
visibilityRange - maximum visibility limit

Fog {
 color 1.0 1.0 1.0
 fogType "LINEAR"
 visibilityRange 10.0
}

341

Adding fog

Several fog samples

[fog1.wrl]
a. No fog

[fog2.wrl]
b. Linear fog, visibility

range 30.0

[fog3.wrl]
c. Exponential fog,

visibility range 30.0

[fog5.wrl]
c. Linear fog with a

background
(don’t do this!)

342

Adding fog

Summary

Fog has a color, a type, and a visibility range

Fog can be used to set a mood, even indoors

Fog limits the viewer’s sight:
Reduces the amount of the world you have
to build
Reduces the amount of the world that must
be drawn

343
Adding sound

Motivation

Creating sounds

Syntax: AudioClip

Syntax: MovieTexture

Selecting sound source types

Syntax: Sound

Syntax: Sound

Syntax: Sound

Setting the sound range

Creating triggered sounds

A sample using triggered sound

A sample using triggered sound

Creating continuous localized sounds

A sample using continuous localized sound

A sample using continuous localized sound

Creating continuous background sounds

Summary

344

Adding sound

Motivation

Sounds can be triggered by viewer actions
Clicks, horn honks, door latch noises

Sounds can be continuous in the background
Wind, crowd noises, elevator music

Sounds emit from a location, in a direction,
within an area

345

Adding sound

Creating sounds

Sounds have two components
A sound source providing a sound signal

Like a stereo component

A sound emitter converts a signal to virtual
sound

Like a stereo speaker

346

Adding sound

Syntax: AudioClip

An AudioClip node creates a digital sound
source

url - a sound file URL
pitch - playback speed
playback controls, like a TimeSensor node

Sound {
 source AudioClip {
 url "myfile.wav"
 pitch 1.0
 startTime 0.0
 stopTime 0.0
 loop FALSE
 }
}

347

Adding sound

Syntax: MovieTexture

A MovieTexture node creates a movie sound
source

url - a texture move file URL
speed - playback speed
playback controls, like a TimeSensor node

Sound {
 source MovieTexture {
 url "movie.mpg"
 speed 1.0
 startTime 0.0
 stopTime 0.0
 loop FALSE
 }
}

348

Adding sound

Selecting sound source types

Supported by the AudioClip node:
WAV - digital sound files

Good for sound effects

MIDI - General MIDI musical
performance files

MIDI files are good for background
music

Supported by the MovieTexture node:
MPEG - movie file with sound

Good for virtual TVs

349

Adding sound

Syntax: Sound

A Sound node describes a sound emitter
source - AudioClip or MovieTexture node
location and direction - emitter placement

Sound {
 source AudioClip { . . . }
 location 0.0 0.0 0.0
 direction 0.0 0.0 1.0
}

350

Adding sound

Syntax: Sound

A Sound node describes a sound emitter
intensity - volume
spatialize - use spatialize processing
priority - prioritize the sound

Sound {
 . . .
 intensity 1.0
 spatialize TRUE
 priority 0.0
}

351

Adding sound

Syntax: Sound

A Sound node describes a sound emitter
minFront, minBack - inner ellipsoid
maxFront, maxBack - outer ellipsoid

Sound {
 . . .
 minFront 1.0
 minBack 1.0
 maxFront 10.0
 maxBack 10.0
}

352

Adding sound

Setting the sound range

The sound range fields specify two ellipsoids
minFront and minBack control an inner
ellipsoid
maxFront and maxBack control an outer
ellipsoid

Sound has a constant volume inside the inner
ellipsoid

Sound drops to zero volume from the inner to
the outer ellipsoid

353

Adding sound

Creating triggered sounds

AudioClip node:
loop FALSE
Set startTime from a sensor node

Sound node:
spatialize TRUE
minFront etc. with small values
priority 1.0

354

Adding sound

A sample using triggered sound

Group {
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 1.0
 }
 geometry Box { size 0.23 0.1 1.5 }
 }
 DEF C4 TouchSensor { }
 Sound {
 source DEF PitchC4 AudioClip {
 url "tone1.wav"
 pitch 1.0
 }
 maxFront 100.0
 maxBack 100.0
 }
]
}
ROUTE C4.touchTime TO PitchC4.set_startTime

355

Adding sound

A sample using triggered sound

[kbd.wrl]

356

Adding sound

Creating continuous localized sounds

AudioClip node:
loop TRUE
startTime 0.0 (default)
stopTime 0.0 (default)

Sound node:
spatialize TRUE (default)
minFront etc. with medium values
priority 0.0 (default)

357

Adding sound

A sample using continuous localized sound

Sound {
 source AudioClip {
 url "willow1.wav"
 loop TRUE
 startTime 1.0
 stopTime 0.0
 }
 minFront 5.0
 minBack 5.0
 maxFront 10.0
 maxBack 10.0
}
Transform {
 translation 0.0 -1.65 0.0
 children [
 Inline { url "sndmark.wrl" }
]
}

358

Adding sound

A sample using continuous localized sound

[ambient.wrl]

359

Adding sound

Creating continuous background sounds

AudioClip node:
loop TRUE
startTime 0.0 (default)
stopTime 0.0 (default)

Sound node:
spatialize FALSE (default)
minFront etc. with large values
priority 0.0 (default)

360

Adding sound

Summary

An AudioClip node or a MovieTexture node
describe a sound source

A URL gives the sound file
Looping, start time, and stop time control
playback

A Sound node describes a sound emitter
A source node provides the sound
Range fields describe the sound volume

361
Controlling the viewpoint

Motivation

Creating viewpoints

Syntax: Viewpoint

A sample using multiple viewpoints

Summary

362

Controlling the viewpoint

Motivation

By default, the viewer enters a world at (0.0,
0.0, 10.0)

You can provide your own preferred view
points

Select the entry point position
Select favorite views for the viewer
Name the views for a browser menu

363

Controlling the viewpoint

Creating viewpoints

Viewpoints specify a desired location, an
orientation, and a camera field of view lens
angle

Viewpoints can be transformed using a
Transform node

The first viewpoint found in a file is the entry
point

364

Controlling the viewpoint

Syntax: Viewpoint

A Viewpoint node specifies a named viewing
location

position and orientation - viewing location
fieldOfView - camera lens angle
description - description for viewpoint
menu

Viewpoint {
 position 0.0 0.0 10.0
 orientation 0.0 0.0 1.0 0.0
 fieldOfView 0.785
 description "Entry View"
}

365

Controlling the viewpoint

A sample using multiple viewpoints

[windmill.wrl]

366

Controlling the viewpoint

Summary

Specify favorite viewpoints in Viewpoint nodes

The first viewpoint in the file is the entry
viewpoint

367
Controlling navigation

Motivation

Selecting navigation types

Specifying avatars

Controlling the headlight

Syntax: NavigationInfo

Summary

368

Controlling navigation

Motivation

Different types of worlds require different
styles of navigation

Walk through a dungeon
Fly through a cloud world
Examine shapes in a CAD application

You can select the navigation type

You can describe the size and speed of the
viewer’s avatar

369

Controlling navigation

Selecting navigation types

There are five standard navigation keywords:
WALK - walk, pulled down by gravity
FLY - fly, unaffected by gravity
EXAMINE - examine an object at "arms
length"
NONE - no navigation, movement controlled
by world not viewer!
ANY - allows user to change navigation type

Some browsers support additional navigation
types

370

Controlling navigation

Specifying avatars

Avatar size (width, height, step height) and
speed can be specified

371

Controlling navigation

Controlling the headlight

By default, a headlight is placed on the
avatar’s head and aimed in the head direction

You can turn this headlight on and off
Most browsers provide a menu option to
control the headlight
You can also control the headlight with the
NavigationInfo node

372

Controlling navigation

Syntax: NavigationInfo

A NavigationInfo node selects the navigation
type and avatar characteristics

type - navigation style
avatarSize and speed - avatar
characteristics
headlight - headlight on or off

NavigationInfo {
 type ["WALK", "ANY"]
 avatarSize [0.25, 1.6, 0.75]
 speed 1.0
 headlight TRUE
}

373

Controlling navigation

Summary

The navigation type specifies how a viewer
can move in a world

walk, fly, examine, or none

The avatar overall size and speed specify the
viewer’s avatar characteristics

374

375
Sensing the viewer

Motivation

Sensing the viewer

Using visibility and proximity sensors

Syntax: VisibilitySensor

Syntax: ProximitySensor

Syntax: ProximitySensor

Detecting viewer-shape collision

Creating collision groups

Syntax: Collision

A sample use of proximity sensors and collision groups

Optimizing collision detection

Using multiple sensors

Summary

Summary

Summary

376

Sensing the viewer

Motivation

Sensing the viewer enables you to trigger
animations

when a region is visible to the viewer
when the viewer is within a region
when the viewer collides with a shape

The LOD and Billboard nodes are
special-purpose viewer sensors with built-in
responses

377

Sensing the viewer

Sensing the viewer

There are three types of viewer sensors:
A VisibilitySensor node senses if the
viewer can see a region

A ProximitySensor node senses if the viewer
is within a region

A Collision node senses if the viewer has
collided with shapes

378

Sensing the viewer

Using visibility and proximity sensors

VisibilitySensor and ProximitySensor nodes
sense a box-shaped region

center - region center
size - region dimensions

Both nodes have similar outputs:
enterTime - sends time on visible or region
entry
exitTime - sends time on not visible or
region exit
isActive - sends true on entry, false on exit

379

Sensing the viewer

Syntax: VisibilitySensor

A VisibilitySensor node senses if the viewer
sees or stops seeing a region

center and size - the region’s location and
size
enterTime and exitTime - sends time on
entry/exit
isActive - sends true/false on entry/exit

DEF VisSense VisibilitySensor {
 center 0.0 0.0 0.0
 size 14.0 14.0 14.0
}
ROUTE VisSense.enterTime TO Clock.set_startTime

380

Sensing the viewer

Syntax: ProximitySensor

A ProximitySensor node senses if the viewer
enters or leaves a region

center and size - the region’s location and
size
enterTime and exitTime - sends time on
entry/exit
isActive - sends true/false on entry/exit

DEF ProxSense ProximitySensor {
 center 0.0 0.0 0.0
 size 14.0 14.0 14.0
}
ROUTE ProxSense.enterTime TO Clock.set_startTime

381

Sensing the viewer

Syntax: ProximitySensor

A ProximitySensor node senses the viewer
while in a region

position and orientation - sends position
and orientation while viewer is in the
region

DEF ProxSense ProximitySensor { . . . }

ROUTE ProxSense.position_changed TO PetRobotFollower.set_

382

Sensing the viewer

Detecting viewer-shape collision

A Collision grouping node senses shapes
within the group

Detects if the viewer collides with any
shape in the group
Automatically stops the viewer from going
through the shape

Collision occurs when the viewer’s avatar gets
close to a shape

Collision distance is controlled by the
avatar size in the NavigationInfo node

383

Sensing the viewer

Creating collision groups

Collision checking is expensive so, check for
collision with a proxy shape instead

Proxy shapes are typically extremely
simplified versions of the actual shapes
Proxy shapes are never drawn

A collision group with a proxy shape, but no
children, creates an invisible collidable shape

Windows and invisible railings
Invisible world limits

384

Sensing the viewer

Syntax: Collision

A Collision grouping node senses if the
viewer collides with group shapes

collide - enable/disable sensor
proxy - simple shape to sense instead of
children
children - children to sense
collideTime - sends time on collision

DEF Collide Collision {
 collide TRUE
 proxy Shape { geometry Box { . . . } }
 children [. . .]
}
ROUTE Collide.collideTime TO OuchSound.set_startTime

385

Sensing the viewer

A sample use of proximity sensors and collision
groups

[prox2.wrl]

386

Sensing the viewer

Optimizing collision detection

Collision is on by default
Turn it off whenever possible!

However, once a parent turns off collision, a
child can’t turn it back on!

Collision results from viewer colliding with a
shape, but not from a shape colliding with a
viewer

387

Sensing the viewer

Using multiple sensors

Any number of sensors can sense at the same
time

You can have multiple visibility, proximity,
and collision sensors

Sensor areas can overlap

If multiple sensors should trigger, they do

388

Sensing the viewer

Summary

A VisibilitySensor node checks if a region is
visible to the viewer

The region is described by a center and a
size

Time is sent on entry and exit of visibility

True/false is sent on entry and exit of
visibility

389

Sensing the viewer

Summary

A ProximitySensor node checks if the viewer is
within a region

The region is described by a center and a
size

Time is sent on viewer entry and exit

True/false is sent on viewer entry and exit

Position and orientation of the viewer is
sent while within the sensed region

390

Sensing the viewer

Summary

A Collision grouping node checks if the
viewer has run into a shape

The shapes are defined by the group’s
children or a proxy

Collision time is sent on contact

391
Summary examples

A doorway

A mysterious temple

Depth-cueing using fog

A heads-up display

392

Summary examples

A doorway

A set of ImageTexture nodes add marble
textures
Lighting nodes create dramatic lighting
A Fog node fades distant shapes
A ProximitySensor node controls animation

[doorway.wrl]

393

Summary examples

A mysterious temple

A Background node creates a sky gradient
A Sound node creates a spatialized sound effect
A set of Viewpoint nodes provide standard
views

[temple.wrl]

394

Summary examples

Depth-cueing using fog

Multiple IndexedLineSet nodes create
wireframe isosurfaces
A Fog node with black fog fades out distant
lines for depth-cueing

[isoline.wrl]

395

Summary examples

A heads-up display

A ProximitySensor node tracks the viewer and
moves a panel at each step
The panel contains shapes and sensors to
control the content

[hud.wrl]

396

397
Controlling detail

Motivation

Example

Creating multiple shape versions

Controlling level of detail

Syntax: LOD

Choosing detail ranges

Optimizing a shape

A sample of detail levels

A sample LOD

A sample LOD

Summary

398

Controlling detail

Motivation

The further the viewer can see, the more there
is to draw

If a shape is distant:
The shape is smaller
The viewer can’t see as much detail
So... draw it with less detail

Varying detail with distance reduces upfront
download time, and increases drawing speed

399

Controlling detail

Example

[prox1.wrl]

400

Controlling detail

Creating multiple shape versions

To control detail, model the same shape
several times

high detail for when the viewer is close up
medium detail for when the viewer is
nearish
low detail for when the viewer is distant

Usually, two or three different versions is
enough, but you can have as many as you
want

401

Controlling detail

Controlling level of detail

Group the shape versions as levels in an LOD
grouping node

LOD is short for Level of Detail
List them from highest to lowest detail

402

Controlling detail

Syntax: LOD

An LOD grouping node creates a group of
shapes describing different levels (versions) of
the same shape

center - the center of the shape
range - a list of level switch ranges
level - a list of shape levels

LOD {
 center 0.0 0.0 0.0
 range [. . .]
 level [. . .]
}

403

Controlling detail

Choosing detail ranges

Use a list of ranges for level switch points
If you have 3 levels, you need 2 ranges
Ranges are hints to the browser

range [5.0, 10.0]

shape
center

5.0 10.0

Viewer <= 5.0
Show 1st level

|
|

Viewer <= 10.0
Show 2nd level

|
|

Viewer > 10.0
Show 3rd level

404

Controlling detail

Optimizing a shape

Suggested procedure to make different levels
(versions):

Make the high detail shape first
Copy it to make a medium detail level
Move the medium detail shape to a desired
switch distance
Delete parts that aren’t dominant
Repeat for a low detail level

Lower detail levels should use simpler
geometry, fewer textures, and no text

405

Controlling detail

A sample of detail levels

[torches3.wrl]

406

Controlling detail

A sample LOD

LOD {
 center 0.0 0.0 0.0
 range [7.0, 10.0]
 level [
 Inline { url "torch1.wrl" }
 Inline { url "torch2.wrl" }
 Inline { url "torch3.wrl" }
]
}

407

Controlling detail

A sample LOD

[torches.wrl]

408

Controlling detail

Summary

Increase performance by making multiple
levels of shapes

High detail for close up viewing
Lower detail for more distant viewing

Group the levels in an LOD node
Ordered from high detail to low detail
Ranges to select switching distances

409
Introducing script use

Motivation

Syntax: Script

Defining the program script interface

Data types

Data types

A sample using a program script

A sample using a program script

Summary

410

Introducing script use

Motivation

Many actions are too complex for animation
nodes

Computed animation paths (eg. gravity)
Algorithmic shapes (eg. fractals)
Collaborative environments (eg. games)

You can create new sensors, interpolators,
etc., using program scripts written in

Java - powerful general-purpose language
JavaScript - easy-to-learn language
VRMLscript - same as JavaScript

411

Introducing script use

Syntax: Script

A Script node selects a program script to run:
url - choice of program script

DEF Bouncer Script {
 url "bouncer.class"
or...
 url "bouncer.js"
or...
 url "javascript: ..."
or...
 url "vrmlscript: ..."
}

412

Introducing script use

Defining the program script interface

A Script node also declares the program
script interface

field, eventIn, and eventOut - inputs and
outputs

Each has a name and data type
Fields have an initial value

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
}

413

Introducing script use

Data types

Data type Meaning

SFBool Boolean, true or false value
SFColor, MFColor RGB color value
SFFloat, MFFloat Floating point value
SFImage Image value
SFInt32, MFInt32 Integer value
SFNode, MFNode Node value

414

Introducing script use

Data types

Data type Meaning

SFRotation, MFRotation Rotation value
SFString, MFString Text string value
SFTime Time value
SFVec2f, MFVec2f XY floating point value
SFVec3f, MFVec3f XYZ floating point value

415

Introducing script use

A sample using a program script

DEF Clock TimeSensor { . . . }

DEF Ball Transform { . . . }

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 url "vrmlscript: . . ."
}

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

416

Introducing script use

A sample using a program script

[bounce1.wrl]

417

Introducing script use

Summary

The Script node selects a program script,
specified by a URL

Program scripts have field and event interface
declarations, each with

A data type
A name
An initial value (fields only)

418

419
Writing program scripts with JavaScript

Motivation

Declaring a program script interface

Initializing a program script

Shutting down a program script

Responding to events

Processing events in JavaScript

Accessing fields from JavaScript

Accessing eventOuts from JavaScript

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

Building user interfaces

Building a toggle switch

Using a toggle switch

Using a toggle switch

Building a color selector

Using a color selector

Using a color selector

Summary

420

Writing program scripts with JavaScript

Motivation

A program script implements the Script node
using values from the interface

The script responds to inputs and sends
outputs

A program script can be written in Java,
JavaScript, VRMLscript, and other languages

JavaScript is easier to program
Java is more powerful
VRMLscript is essentially JavaScript

421

Writing program scripts with JavaScript

Declaring a program script interface

For a JavaScript program script, typically
give the script in the Script node’s url field

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 url "javascript: . . ."
or...
 url "vrmlscript: . . ."
}

422

Writing program scripts with JavaScript

Initializing a program script

The optional initialize function is called
when the script is loaded

function initialize () {
 . . .
}

Initialization occurs when:
the Script node is created (typically when
the browser loads the world)

423

Writing program scripts with JavaScript

Shutting down a program script

The optional shutdown function is called when
the script is unloaded

function shutdown () {
 . . .
}

Shutdown occurs when:
the Script node is deleted
the browser loads a new world

424

Writing program scripts with JavaScript

Responding to events

An eventIn function must be declared for each
eventIn

The eventIn function is called each time an
event is received, passing the event’s

value
time stamp

function set_fraction(value, timestamp) {
 . . .
}

425

Writing program scripts with JavaScript

Processing events in JavaScript

If multiple events arrive at once, then multiple
eventIn functions are called

The optional eventsProcessed function is
called after all (or some) eventIn functions
have been called

function eventsProcessed () {
 . . .
}

426

Writing program scripts with JavaScript

Accessing fields from JavaScript

Each interface field is a JavaScript variable
Read a variable to access the field value
Write a variable to change the field value

lastval = bounceHeight; // get field
bounceHeight = newval; // set field

427

Writing program scripts with JavaScript

Accessing eventOuts from JavaScript

Each interface eventOut is a JavaScript
variable

Read a variable to access the last eventOut
value
Write a variable to send an event on the
eventOut

lastval = value_changed[0]; // get last event
value_changed[0] = newval; // send new event

428

Writing program scripts with JavaScript

A sample JavaScript script

Create a Bouncing ball interpolator that
computes a gravity-like vertical bouncing
motion from a fractional time input

Nodes needed:

DEF Ball Transform {
 children [. . .]
}
DEF Clock TimeSensor {
 . . .
}
DEF Bouncer Script {
 . . .
}

429

Writing program scripts with JavaScript

A sample JavaScript script

Script fields needed:
Bounce height

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 . . .
}

430

Writing program scripts with JavaScript

A sample JavaScript script

Inputs and outputs needed:
Fractional time input
Position value output

DEF Bouncer Script {
 . . .
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 . . .
}

431

Writing program scripts with JavaScript

A sample JavaScript script

Initialization and shutdown actions needed:
None - all work done in eventIn function

432

Writing program scripts with JavaScript

A sample JavaScript script

Event processing actions needed:
set_fraction eventIn function
No need for eventsProcessed function

DEF Bouncer Script {
 . . .
 url "vrmlscript:
 function set_fraction(frac, tm) {
 . . .
 }"
}

433

Writing program scripts with JavaScript

A sample JavaScript script

Calculations needed:
Compute new ball position
Send new position event

Use a ball position equation roughly based
upon Physics

See comments in the VRML file for the
derivation of the equation

434

Writing program scripts with JavaScript

A sample JavaScript script

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "vrmlscript:
 function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0;
 value_changed[1] = y;
 value_changed[2] = 0.0;
 }"
}

435

Writing program scripts with JavaScript

A sample JavaScript script

Routes needed:
Clock into script’s set_fraction
Script’s value_changed into transform

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

436

Writing program scripts with JavaScript

A sample JavaScript script

DEF Ball Transform {
 children [
 Shape {
 appearance Appearance {
 material Material {
 ambientIntensity 0.5
 diffuseColor 1.0 1.0 1.0
 specularColor 0.7 0.7 0.7
 shininess 0.4
 }
 texture ImageTexture { url "beach.jpg" }
 textureTransform TextureTransform { scale 2.
 }
 geometry Sphere { }
 }
]
}
DEF Clock TimeSensor {
 cycleInterval 2.0
 startTime 1.0
 stopTime 0.0
 loop TRUE
}
DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "vrmlscript:
 function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0;
 value_changed[1] = y;
 value_changed[2] = 0.0;
 }"
}
ROUTE Clock.fraction_changed TO Bouncer.set_fraction

ROUTE Bouncer.value_changed TO Ball.set_translation

437

Writing program scripts with JavaScript

A sample JavaScript script

[bounce1.wrl]

438

Writing program scripts with JavaScript

Building user interfaces

Program scripts can be used to help create 3D
user interface widgets

Toggle buttons
Radio buttons
Rotary dials
Scrollbars
Text prompts
Debug message text

439

Writing program scripts with JavaScript

Building a toggle switch

A toggle script turns on at 1st touch, off at
2nd

A TouchSensor node can supply touch events

DEF Toggle Script {
 field SFBool on TRUE
 eventIn SFBool set_active
 eventOut SFBool on_changed

 url "vrmlscript:
 function set_active(b, ts) {
 if (b == FALSE) return;
 if (on == TRUE) on = FALSE;
 else on = TRUE;
 on_changed = on;
 }"
}

440

Writing program scripts with JavaScript

Using a toggle switch

Use the toggle switch to make a lamp turn on
and off

DEF LightSwitch TouchSensor { }
DEF LampLight SpotLight { . . . }

DEF Toggle Script { . . . }

ROUTE LightSwitch.isActive TO Toggle.set_active
ROUTE Toggle.on_changed TO LampLight.set_on

441

Writing program scripts with JavaScript

Using a toggle switch

[lamp2a.wrl]

442

Writing program scripts with JavaScript

Building a color selector

The lamp on and off, but the light bulb
doesn’t change color!

A color selector script sends an on color on a
TRUE input, and an off color on a FALSE input

DEF ColorSelector Script {
 field SFColor onColor 1.0 1.0 1.0
 field SFColor offColor 0.0 0.0 0.0
 eventIn SFBool set_selection
 eventOut SFColor color_changed

 url "vrmlscript:
 function set_selection(b, ts) {
 if (b == TRUE) color_changed = onColor;
 else color_changed = offColor;
 }"
}

443

Writing program scripts with JavaScript

Using a color selector

Use the color selector to change the lamp bulb
color

DEF LightSwitch TouchSensor { }
DEF LampLight SpotLight { . . . }

DEF BulbMaterial Material { . . . }

DEF Toggle Script { . . . }

DEF ColorSelector Script { . . . }

ROUTE LightSwitch.isActive TO Toggle.set_active
ROUTE Toggle.on_changed TO LampLight.set_on
ROUTE Toggle.on_changed TO ColorSelector.set_selection
ROUTE ColorSelector.color_changed TO BulbMaterial.set_emi

444

Writing program scripts with JavaScript

Using a color selector

[lamp2.wrl]

445

Writing program scripts with JavaScript

Summary

The initialize and shutdown functions are
called at load and unload

An eventIn function is called when an event is
received

The eventsProcessed function is called after all
(or some) events have been received

Functions can get field values and send event
outputs

446

447
Writing program scripts with Java

Motivation

Declaring a program script interface

Importing packages for the Java class

Creating the Java class

Initializing a program script

Shutting down a program script

Responding to events

Processing events in Java

Accessing fields from Java

Accessing eventOuts from Java

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

Summary

448

Writing program scripts with Java

Motivation

Compared to JavaScript/VRMLscript, Java
enables:

Better modularity
Better data structures
Potential for faster execution
Access to the network

For simple tasks, use JavaScript/VRMLscript
For complex tasks, use Java

449

Writing program scripts with Java

Declaring a program script interface

For a Java program script, give the class file
in the Script node’s url field

A class file is a compiled Java program
script

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "bounce2.class"
}

450

Writing program scripts with Java

Importing packages for the Java class

The program script file must import the
VRML packages:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

451

Writing program scripts with Java

Creating the Java class

The program script must define a public class
that extends the Script class

public class bounce2
 extends Script
{
 . . .
}

452

Writing program scripts with Java

Initializing a program script

The optional initialize method is called when
the script is loaded

public void initialize () {
 . . .
}

Initialization occurs when:
the Script node is created (typically when
the browser loads the world)

453

Writing program scripts with Java

Shutting down a program script

The optional shutdown method is called when
the script is unloaded

public void shutdown () {
 . . .
}

Shutdown occurs when:
the Script node is deleted
the browser loads a new world

454

Writing program scripts with Java

Responding to events

The processEvent method is called each time
an event is received, passing an Event object
containing the event’s

value
time stamp

public void processEvent(Event event) {
 . . .
}

455

Writing program scripts with Java

Processing events in Java

If multiple events arrive at once, then the
processEvent method is called multiple times

The optional eventsProcessed method is called
after all (or some) events have been handled

public void eventsProcessed () {
 . . .
}

456

Writing program scripts with Java

Accessing fields from Java

Each interface field can be read and written
Call getField to get a field object

obj = (SFFloat) getField("bounceHeight");

Call getValue to get a field value
lastval = obj.getValue();

Call setValue to set a field value
obj.setValue(newval);

457

Writing program scripts with Java

Accessing eventOuts from Java

Each interface eventOut can be read and
written

Call getEventOut to get an eventOut object
obj = (SFVec3f) getEventOut("value_changed");

Call getValue to get the last event sent
lastval = obj.getValue();

Call setValue to send an event
obj.setValue(newval);

458

Writing program scripts with Java

A sample Java script

Create a Bouncing ball interpolator that
computes a gravity-like vertical bouncing
motion from a fractional time input

Nodes needed:

DEF Ball Transform {
 children [. . .]
}
DEF Clock TimeSensor {
 . . .
}
DEF Bouncer Script {
 . . .
}

459

Writing program scripts with Java

A sample Java script

Give it the same interface as the JavaScript
example

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "bounce2.class"
}

460

Writing program scripts with Java

A sample Java script

Imports and class definition needed:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class bounce2
 extends Script
{
 . . .
}

461

Writing program scripts with Java

A sample Java script

Class variables needed:
One for the bounceHeight field value
One for the value_changed eventOut object

private float bounceHeight;
private SFVec3f value_changedObj;

462

Writing program scripts with Java

A sample Java script

Initialization actions needed:
Get the value of the bounceHeight field
Get the value_changedObj eventOut object

public void initialize()
{
 SFFloat obj = (SFFloat) getField("bounceHeight");
 bounceHeight = (float) obj.getValue();
 value_changedObj = (SFVec3f) getEventOut("value_chan
}

463

Writing program scripts with Java

A sample Java script

Shutdown actions needed:
None - all work done in processEvent
method

464

Writing program scripts with Java

A sample Java script

Event processing actions needed:
processEvent event method
No need for eventsProcessed method

public void processEvent(Event event)
{
 . . .
}

465

Writing program scripts with Java

A sample Java script

Calculations needed:
Compute new ball position
Send new position event

466

Writing program scripts with Java

A sample Java script

public void processEvent(Event event)
{
 ConstSFFloat flt = (ConstSFFloat) event.getValue();
 float frac = (float) flt.getValue();

 float y = (float)(4.0 * bounceHeight * frac * (1.0 - frac

 float[] changed = new float[3];
 changed[0] = (float) 0.0;
 changed[1] = y;
 changed[2] = (float) 0.0;
 value_changedObj.setValue(changed);
}

467

Writing program scripts with Java

A sample Java script

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class bounce2
 extends Script
{
 private float bounceHeight;
 private SFVec3f value_changedObj;

 public void initialize()
 {
 // Get the fields and eventOut
 SFFloat floatObj = (SFFloat) getField("bounceHeight
 bounceHeight = (float) floatObj.getValue();
 value_changedObj = (SFVec3f) getEventOut("value_chan
 }

 public void processEvent(Event event)
 {
 ConstSFFloat flt = (ConstSFFloat) event.getValue();
 float frac = (float) flt.getValue();

 float y = (float)(4.0 * bounceHeight * frac * (1.0 -

 float[] changed = new float[3];
 changed[0] = (float)0.0;
 changed[1] = y;
 changed[2] = (float)0.0;
 value_changedObj.setValue(changed);
 }
}

468

Writing program scripts with Java

A sample Java script

Routes needed:
Clock into script’s set_fraction
Script’s value_changed into transform

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

469

Writing program scripts with Java

A sample Java script

DEF Ball Transform {
 children [
 Shape {
 appearance Appearance {
 material Material {
 ambientIntensity 0.5
 diffuseColor 1.0 1.0 1.0
 specularColor 0.7 0.7 0.7
 shininess 0.4
 }
 texture ImageTexture { url "beach.jpg" }
 textureTransform TextureTransform { scale 2.
 }
 geometry Sphere { }
 }
]
}
DEF Clock TimeSensor {
 cycleInterval 2.0
 startTime 1.0
 stopTime 0.0
 loop TRUE
}
DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "bounce2.class"
}
ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

470

Writing program scripts with Java

A sample Java script

[bounce2.wrl]

471

Writing program scripts with Java

Summary

The initialize and shutdown methods are
called at load and unload

The processEvent method is called when an
event is received

The eventsProcessed method is called after all
(or some) events have been received

Methods can get field values and send event
outputs

473
Creating new node types

Motivation

Syntax: PROTO

Defining prototype bodies

Syntax: IS

Syntax: IS

Using IS

Using prototyped nodes

Controlling usage rules

Controlling usage rules

A sample prototype use

A sample prototype use

A sample prototype use

A sample prototype use

A sample prototype use

Changing a prototype

A sample prototype use

Syntax: EXTERNPROTO

Summary

474

Creating new node types

Motivation

You can create new node types that
encapsulate:

Shapes
Sensors
Interpolators
Scripts
anything else . . .

This creates high-level nodes
Robots, menus, new shapes, etc.

475

Creating new node types

Syntax: PROTO

A PROTO statement declares a new node type (a
prototype)

name - the new node type name
fields and events - interface to the
prototype

PROTO BouncingBall [
 field SFFloat bounceHeight 1.0
 field SFTime cycleInterval 1.0
] {
 . . .
}

476

Creating new node types

Defining prototype bodies

PROTO defines:
body - nodes and routes for the new node
type

PROTO BouncingBall [
 . . .
] {
 Transform {
 children [. . .]
 }
 ROUTE . . .
}

477

Creating new node types

Syntax: IS

The IS syntax connects a prototype interface
field, eventIn, or eventOut to the body

Like an assignment statement
Assigns interface field or eventIn to body
Assigns body eventOut to interface

478

Creating new node types

Syntax: IS

Interface items connected by IS need not have
the same name as an item in the body, but
often do

PROTO BouncingBall [
 field SFFloat bounceHeight 1.0
 field SFTime cycleInterval 1.0
] {
 . . .
 DEF Clock TimeSensor {
 cycleInterval IS cycleInterval
 . . .
 }
 . . .
}

479

Creating new node types

Using IS

Interface

May IS to . . .

Fields
Exposed

fields EventIns EventOuts

Fields yes yes no no
Exposed fields no yes no no
EventIns no yes yes no
EventOuts no yes no yes

480

Creating new node types

Using prototyped nodes

The new node type can be used like any other
type

BouncingBall {
 bounceHeight 3.0
 cycleInterval 2.0
}

481

Creating new node types

Controlling usage rules

Recall that node use must be appropriate for
the context

A Shape node specifies shape, not color
A Material node specifies color, not shape
A Box node specifies geometry, not shape or
color

482

Creating new node types

Controlling usage rules

The context for a new node type depends upon
the first node in the PROTO body

For example, if the first node is a geometry
node:

The prototype creates a new geometry node
type

The new node type can be used wherever the
first node of the prototype body can be used

483

Creating new node types

A sample prototype use

Create a BouncingBall node type that:
Builds a beachball

Creates an animation clock
Using a PROTO field to select the cycle
interval

Bounces the beachball
Using the bouncing ball program script
Using a PROTO field to select the bounce
height

484

Creating new node types

A sample prototype use

Fields needed:
Bounce height
Cycle interval

PROTO BouncingBall [
 field SFFloat bounceHeight 1.0
 field SFTime cycleInterval 1.0
] {
 . . .
}

485

Creating new node types

A sample prototype use

Inputs and outputs needed:
None - a TimeSensor node is built in to the
new node

486

Creating new node types

A sample prototype use

Body needed:
A ball shape inside a transform
An animation clock
A bouncing ball program script
Routes connecting it all together

PROTO BouncingBall [
 . . .
] {
 DEF Ball Transform {
 children [
 Shape { . . . }
]
 }
 DEF Clock TimeSensor { . . . }
 DEF Bouncer Script { . . . }
 ROUTE . . .
}

487

Creating new node types

A sample prototype use

[bounce3.wrl]

488

Creating new node types

Changing a prototype

If you change a prototype, all uses of that
prototype change as well

Prototypes enable world modularity
Large worlds make heavy use of prototypes

For the BouncingBall prototype, adding a
shadow to the prototype makes all balls have a
shadow

489

Creating new node types

A sample prototype use

[bounce4.wrl]

490

Creating new node types

Syntax: EXTERNPROTO

Prototypes are typically in a separate external
file, referenced by an EXTERNPROTO

name, fields, events - as from PROTO, minus
initial values
url - the URL of the prototype file
#name - name of PROTO in file

EXTERNPROTO BouncingBall [
 field SFFloat bounceHeight
 field SFTime cycleInterval
] "bounce.wrl#BouncingBall"

491

Creating new node types

Summary

PROTO declares a new node type and defines its
node body

EXTERNPROTO declares a new node type,
specified by URL

492

493
Providing information about your world

Motivation

Syntax: WorldInfo

494

Providing information about your world

Motivation

After you’ve created a great world, sign it!

You can provide a title and a description
embedded within the file

495

Providing information about your world

Syntax: WorldInfo

A WorldInfo node provides title and
description information for your world

title - the name for your world
info - any additional information

WorldInfo {
 title "My Masterpiece"
 info ["Copyright (c) 1997 Me."]
}

496

497
Summary examples

An animated switch

A vector node for vector fields

An animated texture plane node

A cutting plane node

An animated flame node

A torch node

498

Summary examples

An animated switch

A Switch node groups together a set of
elevation grids
A Script node converts fractional times to
switch choices

[animgrd.wrl]

499

Summary examples

A vector node for vector fields

A PROTO encapsulates a vector shape into a
Vector node
That node is used multiple times to create a
vector field

[vecfld1.wrl]

500

Summary examples

An animated texture plane node

A Script node selects a texture to map to a
face
A PROTO encapsulates the face shape, script,
and routes to create a TexturePlane node type

[texplane.wrl]

501

Summary examples

A cutting plane node

A TexturePlane node creates textured face
A PlaneSensor node slides the textured face
A PROTO encapsulates the textured face, sensor,
and translator script to create a SlidingPlane
node

[cutplane.wrl]

502

Summary examples

An animated flame node

A Script node cycles between flame textures
A PROTO encapsulates the flame shape, script,
and routes into a Flames node

[match.wrl]

503

Summary examples

A torch node

A Flame node creates animated flame
An LOD node selects among torches using the
flame
A PROTO encapsulates the torches into a Torch
node

[columns.wrl]

504

505
Miscellaneous extensions

Working groups

Working groups

Using the binary file format

Using the binary file format

Using the external authoring interface

Using the external authoring interface

Using living worlds

506

Miscellaneous extensions

Working groups

Several groups are working on VRML
extensions

Color fidelity WG
Compressed binary format WG
Conformance WG
Database WG
External authoring interface WG
Human animation WG

507

Miscellaneous extensions

Working groups

And more...
Keyboard input WG
Living worlds WG
Metaforms WG
Object-oriented WG
Universal media libraries WG
Widgets WG

508

Miscellaneous extensions

Using the binary file format

The binary file format enables smaller files
for faster download

The binary file format includes
Binary representation of nodes and fields
Support for prototypes
Geometry compression

509

Miscellaneous extensions

Using the binary file format

Most authoring will be done with world
builders that output binary VRML files
directly

Hand-authored text VRML will be compiled
to the binary format

Converters back to text VRML will become
available

Comments will be lost by translation
WorldInfo nodes will be retained

510

Miscellaneous extensions

Using the external authoring interface

Program scripts in a Script node are Internal
Inside the world
Connected by routes

External program scripts can be written in
Java using the External Authoring Interface
(EAI)

Outside the world, on an HTML page
No need to use routes!

511

Miscellaneous extensions

Using the external authoring interface

A typical Web page contains:
HTML text
An embedded VRML browser plug-in
A Java applet

The EAI enables the Java applet to "talk" to
the VRML browser

The EAI is not part of the VRML standard
(yet), but it is widely supported

Check your browser’s release notes for EAI
support

512

Miscellaneous extensions

Using living worlds

Several extensions are in progress to create a
framework for multi-user living worlds

Shared objects and spaces
Piloted objects (like avatars)
Common avatar descriptions

513
Conclusion

Coverage

Coverage

Where to find out more

Where to find out more

Introduction to VRML 97

514

Conclusion

Coverage

This morning we covered:
Building primitive shapes
Building complex shapes
Translating, rotating, and scaling shapes
Controlling appearance
Grouping shapes
Animating transforms
Interpolating values
Sensing viewer actions

515

Conclusion

Coverage

This afternoon we covered:
Controlling texture
Controlling shading
Adding lights
Adding backgrounds and fog
Controlling detail
Controlling viewing
Adding sound
Sensing the viewer
Using and writing program scripts
Building new node types

516

Conclusion

Where to find out more

The VRML 2.0 specification
http://vag.vrml.org/VRML2.0/FINAL

The VRML 97 specification
http://vrml.sgi.com/moving-worlds

The VRML Repository
http://www.sdsc.edu/vrml

517

Conclusion

Where to find out more

Shameless plug for my VRML book...

The VRML 2.0 Sourcebook
by Andrea L. Ames, David R. Nadeau, and
John L. Moreland
published by John Wiley & Sons

518

Conclusion

Introduction to VRML 97

Thanks for coming!

Dave Nadeau
San Diego Supercomputer Center

nadeau@sdsc.edu

